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Abstract

This paper presents some uses of constraint logic programming in the field of natural
language processing. It consists of three parts. The first part introduces constraint logic
programming. The second one gives a rapid survey of a variety of constraints that may
be used to design natural language systems. In the last part, we present the use of the
finite domain constraints to model a GB module, namely Binding Theory.

Introduction

By way of introduction, let us make the following remarks about the needs of the natural
language systems. It is worth noticing that:

Current natural language systems involve complex feature structure treatments which
are based on rewriting and unification.

Syntactic features and syntactic processes are subject to various constraints. These
constraints must be dealt with so that to guarantee their satisfiability throughout the
whole process (i.e. the whole parsing or generation process).

The systems which perform the feature structure treatments must offer a great flexibility
in the specification of the syntactic constraints in order that independent aspects of the
linguistic theories can be dealt with independently.

Various linguistic processes do not apply at grammar rule level, but involve larger
portions of the parse tree. These processes must be dealt with by means of constraints
which are global to the whole grammar, and not local to a single rule.

The natural language processing tools must preserve the adequacy, the expressiveness
and the explanatory power of the linguistic systems they model.

In this paper, we propose some solutions to these points based on constraint logic program-
ming. The main interest of this approach is that it offers a global rule-based framework to
handle constraints.



2 Constraint Logic Programming

Constraint logic programming (hereafter CLP) results from the embedding of constraint solv-
ing techniques into logic programming (hereafter LP).

2.1 CLP Programs
A CLP program is a set of constrained Horn clauses of the following form:

A(—Bl,...,Bn {Cl,...,Cm}

where {C1,...,Cp} is a set of constraints called the constraint system of the rule. The
meaning of this rule is that A can be rewritten as By,..., B, provided that the constraints
C1,...,Cy, are simultaneously satisfiable. In other words, A can be rewritten as By,..., By

if there exists at least one instanciation of ground terms for all the variables of the rule which
makes the constraints C', ..., Cy, satisfied.
A CLP goal is a constrained formula of the form:

“—Gy,...,Gy {Ci,....C.}

In other words, it is a CLP clause with an empty head. From a procedural point of view,
the refutation of a goal is performed by means of the following abstract machine proposed by
Alain Colmerauer (1990). This machine has a single non-deterministic transition which can
be described by three expressions:

(1) a. (W.(Ar,... As.... A, S)
b. B« B,....B, R
c. (W,(Ar,...,Ai—1,B1,...,Bn, Aiy1,...,A), SURU{A; = B})

(1a) represents the current state of the machine. In this formula, W is the set of the variables
the values of which we are interested in, that is the set of the variables that occur in the initial
query. Aq,...,A;, ..., A, are the atoms of the current goal; we assume that A; is the selected
atom. S is the current constraint system; it is assumed to be satisfiable. (1b) represents the
selected rule of the program, the constraint system of which is R. And (lc) stands for the
next state of the machine.

The machine is allowed to go from (1a) to (1c) only if the new constraint system S U R U
{A; = B} is satisfiable. Notice that the unification of the selected atom A; with the head
B of the rule is regarded as a mere identity constraint added to the new constraint system.
Thus, this equation replaces the usual substitution of the standard Prolog abstract machine.
In addition to the checking of its satisfiability, the new constraint system is also simplified.
In particular, every variable that the constraints enforce to have a single value is instanciated
(with this value).

2.2 CLP Contributions

Constraint logic programming thus associates unification, Robinson’s resolution and con-
straint solving. It enhances logic programming in many aspects.

First, CLP improves the efficiency of the logic systems because of its active use of the
constraints. Actually, the CLP systems maintain the constraints active throughout the whole



proof construction process, until they can be adequately solved. The constraints are said
to be active in the extent that the satisfiability of the constraint system is checked and the
constraint system is simplified at each resolution step. The constraints are actually solved
as soon as a sufficient knowledge about their variables is available. Finally, as soon as the
constraint system become inconsistent, a backtracking happens.

The use of constraints also improves LP expressiveness because constraints have a different
and more general interpretation (Jaffar and Lassez 1987a, Dincbas et al. 1988) than that of
Prolog predicates. This results form the introduction of new domains of computation such
as Boolean and arithmetic domains beside the usual Herbrand’s one. The user can thus
handle directly the objects of the intended domain, namely of the domain of discourse, as
opposed to having them encoded as Prolog terms. Similarly, the constraints directly describe
the privileged properties of the intended domain, which results in a saving of naturalness.
Also, we can by means of constraints represent properties implicitly and describe objects
intentionally. We then have available not only the objects, but also the properties that
characterize them.

Another major aspect of constraints is that they are fully declarative. They are fully inde-
pendent of the way they are used, that is to parse or to generate sentences, with a top-down
or a bottom-up strategy. Also, they can be stated at any time contrarily to Prolog constraints
such as arithmetic predicates, which can only be invoked if certain of their parameters are
completely known (Cohen 1990).

Constraints also introduce a greater modularity because each constraint is dealt with
by a specific constraint solver which is integrated at unification level. This results in an
improvement of the genericity and the reusability of the CLP tools which can be used for
different purposes.

3 Constraints for Natural Language Processing

The next part of the paper presents classes of constraints which could be used to write
grammars and to design natural language systems.

3.1 Constraints on Terminal Strings

The three following constraints bear on the terminal strings. They can be used to enhance the
logic grammar expressiveness and declarativeness. These constraints have to be associated
with the grammar rules as constraint systems. Notice that even if they describe relations
that hold between items that belong to a single rule, they are global since they constrain the
whole syntactic structure. The reason is that a syntactic structure may be produced only if
it satisfies all the constraints of the grammar rules used to derive it.

3.1.1 The Precedence Constraint

The most general and basic of the constraints on terminal strings is the precedence one (Saint-
Dizier 1991). It merely expresses the linear precedence relation and has the following form:
precedes(A, B). This constraint states that the part of the syntactic structure derived from A
must linearly precede the one derived from B. We can thus write grammars in which all the
precedence relations are explicitly stated. Their rules may have the following form:

X =Yy, ..., Y, { precedes(Y;,,Y;,), ..., precedes(Y;,., Y;.)}



Such a rule states that X could, for instance, be derived as the unordered list [Y1,...,Y,]
(which represents the set {Y7,...,Y,}) provided that all the precedence constraints
precedes(Y;,,Y;,), ..., precedes(Y;,, ,Y;,,) are satisfied. Thus, linguists can write grammars
in which the precedence relations are specified only when necessary. This can be interest-
ing, for instance, to describe grammars for free phrase order languages in a very elegant and
economic way. The operational semantics of the precedence constraint has been described in
(Saint-Dizier 1990).

In addition to the precedence constraint, it seems interesting to us to add to these gram-
mars two other constraints, namely an immediate precedence constraint and a connectedness
one.

3.1.2 The Immediate Precedence Constraint

The immediate precedence constraint has the following form: immediately_precedes(A, B) and
states that the part of the syntactic structure derived from A must precede the one derived
from B and that these two parts must be adjacent. We can describe this constraint by means
of the precedence constraint in the following manner:

immediately_precedes(A, B) <
(precedes(A, B) A ( ZC: precedes(A, C) A precedes(C, B)))

The immediate precedence constraint constitutes a tool for writing grammars which is finer
than the precedence constraint and thus is, in many cases, more adequate than the latter.
Besides, it is also stronger than the latter and thus increases the efficiency of the NL systems
which use these grammars (cf. 3.1.1): the stronger the constraints are, the more efficient the
system is since the search space pruning is more extensive. We can, for example, use this
constraint to state that in English, a transitive verb precedes its direct object complement
and is adjacent to it:

vp -> v, np {immediately precedes(v, np)}

3.1.3 The Connectedness Constraint

The second constraint that could be added to the grammars presented in 3.1.1 is a connected-
ness one. It has the following form connected(X ), where X is either a symbol or an unordered
list of symbols. This constraint states that the part of the syntactic structure derived from
X must be connected, i.e. that a symbol which is not dominated by X, cannot occur between
symbols (according to the linear precedence relation) dominated by X. The connectedness
constraint can be used, for example, to state that a phrase must be connected. This can
be described by associating the constraint connected(XP) with the rules which describe the
phrasal elements.

We can thus see that the precedence constraint is a very basic one, and that several
others may be defined on top of it. Moreover, these constraints form a tool which makes
the grammars more expressive and also more declarative since precedence, adjacency, and
connectedness relations are explicitly stated.

3.2 Arithmetic and Boolean Constraints

Arithmetic and Boolean constraints are the constraints the more commonly found in the CLP
systems (Colmerauer 1990, Dincbas et al. 1988, Jaffar and Lassez 1987b). The arithmetic



constraints describe relations (i.e. equations, inequalities. ..) between arithmetic typed terms.
Usually, only linear arithmetic constraints are dealt with by CLP systems. Linear arithmetic
constraints seem sufficient since natural language processing do not involve the resolution
of very intricate arithmetic equations. These constraints are useful, especially for semantic
processing and to describe lexical semantics properties. Linear arithmetic constraints are
generally solved with linear programming tools. The arithmetic solvers of almost all the CLP
systems are based on Simplex-like algorithms. Yet, CLP(IR), designed by Jaffar and Lassez
(1987a &1987b), also deals with non-linear constraints thanks to a delay device which freezes
(i.e. delays) the resolution of the non-linear constraints until they become linear.

Other constraints which may help us to design NL systems are Boolean constraints. They
may be useful, mainly for feature manipulation, for instance in the manner proposed by Franz
Giinthner (1988). We can, for instance, compute the gender of a conjunction of NPs in French
as follows. Let us choose the feature female as gender feature (we may have chosen the feature
male as well). We then have:

np(F) -> np(F1), [et], np(F2) {F =F1 & F2 }

3.3 Long Distance Dependencies: The Pending Constraint

Another class of constraints of much interest for syntactic processing, but also for many other
types of processing is the expression of the long-distance relations between constituents in
a structure (syntactic, semantic, transfer...). The notion of long-distance dependency will
be here formulated as a co-occurrence constraint. This constraint emerged from the logic
programming language Dislog presented in (Saint-Dizier 1988, Saint-Dizier 1989). Let us
present it briefly.

A Dislog clause is a finite, unordered set of Horn clauses f; of the form:

{fla"'afn}

The informal meaning of a Dislog clause is: if a clause f; in a Dislog clause is used to construct
a giwen proof tree, then all the other fjs of that Dislog clause must be used to construct that
proof tree, with the same substitutions applied to identical variables. Moreover, there are no
hypothesis made on the location of these clauses in the proof tree. For example, the following
Dislog clause is composed of two Prolog facts:

{arc(a,b), arc(e, f)}

This clause means that, in a graph, the use of arc(a,b) is conditional to the use of arc(e, f),
and wvice-versa. If one is looking for a path in a graph, this means that all path going through
arc(a, b) will have to go through arc(e, f) and conversely.

A Dislog clause thus permits us to express co-occurrence of clauses in a proof tree. The
constraint stating that all identical variables in an instance of a Dislog clause must be sub-
stituted for the same terms permits the transfer of arguments values between non-contiguous
elements in a very convenient way. A Dislog clause can be subject to various types of restric-
tions such as: linear precedence conditions on the f;s, modalities of application of some f;s,
and specification of bounding domains in which a Dislog clause instance must be fully used.

The co-occurrence of two constituents in a larger one can be expressed by the constraint
pending(A, B), where A is a grammar rule and B is an unordered list of grammar rules
(Saint-Dizier 1991). Informally, this constraint means that A originates the pending of the



rules in B. In other words, A can be used in a derivation, only if somewhere else in the
derivation (corresponding to the sentence), all the rules in B are also used with identical
substitutions applied to identical variables. Notice that the constraint pending does not
impose any restriction on the location of the constituents derived by means of the rules of B.

4 The Finite Domain Constraints and their Use in GB-Based
NLP

The last class of constraint we would like to present is that of the finite domain constraints
i.e. of constraints over variables which range over finite domains. The introduction of these
constraints aims at embedding constraint propagation techniques inside logic programming
(Van Hentenrick 1989). These techniques are based on the idea of a priori pruning. In other
words, the constraints are used to reduce the search space before discovering a failure. The
pruning is achieved by spending more time at each node of the search tree, removing every
combination of values that cannot appear in any solution (Freuder 1978, Mackworth 1987).
To illustrate the use of these constraints, let us go over the modeling of a Government and
Binding module (Chomsky 1981), namely Binding Theory'.

Binding Theory consists of three conditions. Condition A states that an anaphora must be
bound in its governing category. Anaphors consist of reflexives such as himself and reciprocals
such as each other. The governing category of a noun phrase is a certain domain of the
syntactic structure which contains that noun phrase. Finally, we say that X binds Y if and
only if X c-commands Y and is co-indexed with it. For instance, in a sentence like:

(2) * John believes Mary’s description of himself;

The anaphora himself is not bound in its governing category. As a result, the sentence is
ungrammatical. On the other hand, in the sentence:

(3) Mary believes John;’s description of himself;

the anaphora is bound by John; and the sentence can thus be grammatical. If we adopt
Abney’s DP-Analysis (Abney 1987), the noun phrase John’s description of himself which is
the governing category of himself would have the following representation. One can easily
notice that each of the four elements John, ’s, description, of could be the wanted binder
since they all are dominated by the governing category of himself and c-command himself.
However, we can rule out three of these potential binders because ’s and of do not have
morpho-syntactic features, also called ¢-Features, and because description does not have a
gender feature. Notice that in (2), the four potential binders are ruled out because Mary’s
gender does not agree with that of himself.

More formally, if z is an anaphora, and if by, ..., b, are the potential binders of z (i.e. the
phrases that c-command z and are dominated by the governing category of z), then Condition
A can be expressed as bound(z,[by,...,b,]). This constraint states that z must be bound by
one of the members of the list [b1,...,by]; bound(z,[b1,...,by]) is equivalent to the following
conjunction:

binder(z,Y) A index(z) = index(Y) A ¢-F(x) = ¢-F(Y) A belongs(Y, b1, ..., bn))

'Pianesi (1991) presents another constraint based modeling of Binding Theory. Besides, Fong (1990) pro-
poses a related work about free indexation.
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Figure 1: The governing category of himself

which states that the binder Y of z must have the same index and the same ¢-Features as z
and must belong to the set of the potential binders of z. In this conjunction, binder(z,Y) is
an uninterpreted relation that introduces a new variable Y which represents the binder of .
In this conjunction is the finite domain constraint belongs(Y,[b1, ..., by]) states that ¥ must
be one of the members of [by,...,b,]. The set {by,...,b,} is thus the finite domain of the
variable Y, and the resolution of the constraint belongs consists in removing the members of
this domain that cannot have the same index and the same ¢-Features as z. More generally,
we rule out the domain members which cannot be binders of z for one reason or another.
During the syntactic process, each time a DP x happens to be an anaphora, we have to
compute the set PB of its potential binders and to posit a constraint bound(z, PB).

Binding Theory also comprises two other conditions (Conditions B and C) the modelings
of which are essentially identical; we only present one of them here. Condition B states that
a pronominal must be free in its governing category. Pronominals are pronouns such as he or
him. The following sentences show the effects of Condition B:

(4) a. * John thinks that [¢c Mary; hates her;]
b. John thinks that [gc Mary; hates her;]

In the sentence (4a), her refers to Mary and thus is bound in its governing category which
leads to the ungrammaticality of the sentence; we should have had John think that Mary
hates herself. In the sentence (4b), her is not co-referential with Mary and the sentence is
grammatical. In particular, the pronominal her is free in its governing category.

So, if £ is a pronominal and if by,...,b, is the set of the potential binders of z, then
Condition B can be expressed as free(z, [b1, ..., b,]). This constraint imposes that the index of
z must be different from those of the members of [by, ..., b,]. Each time we find a pronominal,

we must posit a constraint free corresponding to that noun phrase.
To end this last part, let us notice that the type of modeling we presented for Binding
Theory may be used to model almost all the GB principles (Hathout 1991). We only have



Figure 2: The potential binders of z

to replace the set of the potential binders by that of the potential antecedents, governers,
controlers. ..

5 Conclusion

To summarize, we could say that:

e Constraint logic programming offers a global rule-based framework to handle con-
straints.

e CLP associates unification, Robinson’s resolution and constraint solving.

e The CLP program are fully declarative and soundly based within a unified framework
of formal semantics.

e They exhibit a great expressive power and a great ease of use since constraints can be
stated at any time.
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