
Constraint Logi Programmingfor Natural Language ProessingNabil Hathout & Patrik Saint-DizierIRIT { Universit�e Paul Sabatier118, route de Narbonne. F-31062 Toulouse Cedex.e-mail: hathout�irit.fr & stdizier�irit.frAbstratThis paper presents some uses of onstraint logi programming in the �eld of naturallanguage proessing. It onsists of three parts. The �rst part introdues onstraint logiprogramming. The seond one gives a rapid survey of a variety of onstraints that maybe used to design natural language systems. In the last part, we present the use of the�nite domain onstraints to model a GB module, namely Binding Theory.1 IntrodutionBy way of introdution, let us make the following remarks about the needs of the naturallanguage systems. It is worth notiing that:� Current natural language systems involve omplex feature struture treatments whihare based on rewriting and uni�ation.� Syntati features and syntati proesses are subjet to various onstraints. Theseonstraints must be dealt with so that to guarantee their satis�ability throughout thewhole proess (i.e. the whole parsing or generation proess).� The systems whih perform the feature struture treatments must o�er a great exibilityin the spei�ation of the syntati onstraints in order that independent aspets of thelinguisti theories an be dealt with independently.� Various linguisti proesses do not apply at grammar rule level, but involve largerportions of the parse tree. These proesses must be dealt with by means of onstraintswhih are global to the whole grammar, and not loal to a single rule.� The natural language proessing tools must preserve the adequay, the expressivenessand the explanatory power of the linguisti systems they model.In this paper, we propose some solutions to these points based on onstraint logi program-ming. The main interest of this approah is that it o�ers a global rule-based framework tohandle onstraints. 1

2 Constraint Logi ProgrammingConstraint logi programming (hereafter CLP) results from the embedding of onstraint solv-ing tehniques into logi programming (hereafter LP).2.1 CLP ProgramsA CLP program is a set of onstrained Horn lauses of the following form:A B1; : : : ; Bn fC1; : : : ; Cmgwhere fC1; : : : ; Cmg is a set of onstraints alled the onstraint system of the rule. Themeaning of this rule is that A an be rewritten as B1; : : : ; Bn provided that the onstraintsC1; : : : ; Cm are simultaneously satis�able. In other words, A an be rewritten as B1; : : : ; Bnif there exists at least one instaniation of ground terms for all the variables of the rule whihmakes the onstraints C1; : : : ; Cm satis�ed.A CLP goal is a onstrained formula of the form: G1; : : : ; Gp fC1; : : : ; CqgIn other words, it is a CLP lause with an empty head. From a proedural point of view,the refutation of a goal is performed by means of the following abstrat mahine proposed byAlain Colmerauer (1990). This mahine has a single non-deterministi transition whih anbe desribed by three expressions:(1) a. (W; (A1; : : : ; Ai; : : : ; An); S)b. B B1; : : : ; Bn R. (W; (A1; : : : ; Ai�1; B1; : : : ; Bn; Ai+1; : : : ; An); S [R [fAi = Bg)(1a) represents the urrent state of the mahine. In this formula, W is the set of the variablesthe values of whih we are interested in, that is the set of the variables that our in the initialquery. A1; : : : ; Ai; : : : ; An are the atoms of the urrent goal; we assume that Ai is the seletedatom. S is the urrent onstraint system; it is assumed to be satis�able. (1b) represents theseleted rule of the program, the onstraint system of whih is R. And (1) stands for thenext state of the mahine.The mahine is allowed to go from (1a) to (1) only if the new onstraint system S [R[fAi = Bg is satis�able. Notie that the uni�ation of the seleted atom Ai with the headB of the rule is regarded as a mere identity onstraint added to the new onstraint system.Thus, this equation replaes the usual substitution of the standard Prolog abstrat mahine.In addition to the heking of its satis�ability, the new onstraint system is also simpli�ed.In partiular, every variable that the onstraints enfore to have a single value is instaniated(with this value).2.2 CLP ContributionsConstraint logi programming thus assoiates uni�ation, Robinson's resolution and on-straint solving. It enhanes logi programming in many aspets.First, CLP improves the eÆieny of the logi systems beause of its ative use of theonstraints. Atually, the CLP systems maintain the onstraints ative throughout the whole2

proof onstrution proess, until they an be adequately solved. The onstraints are saidto be ative in the extent that the satis�ability of the onstraint system is heked and theonstraint system is simpli�ed at eah resolution step. The onstraints are atually solvedas soon as a suÆient knowledge about their variables is available. Finally, as soon as theonstraint system beome inonsistent, a baktraking happens.The use of onstraints also improves LP expressiveness beause onstraints have a di�erentand more general interpretation (Ja�ar and Lassez 1987a, Dinbas et al. 1988) than that ofProlog prediates. This results form the introdution of new domains of omputation suhas Boolean and arithmeti domains beside the usual Herbrand's one. The user an thushandle diretly the objets of the intended domain, namely of the domain of disourse, asopposed to having them enoded as Prolog terms. Similarly, the onstraints diretly desribethe privileged properties of the intended domain, whih results in a saving of naturalness.Also, we an by means of onstraints represent properties impliitly and desribe objetsintentionally. We then have available not only the objets, but also the properties thatharaterize them.Another major aspet of onstraints is that they are fully delarative. They are fully inde-pendent of the way they are used, that is to parse or to generate sentenes, with a top-downor a bottom-up strategy. Also, they an be stated at any time ontrarily to Prolog onstraintssuh as arithmeti prediates, whih an only be invoked if ertain of their parameters areompletely known (Cohen 1990).Constraints also introdue a greater modularity beause eah onstraint is dealt withby a spei� onstraint solver whih is integrated at uni�ation level. This results in animprovement of the generiity and the reusability of the CLP tools whih an be used fordi�erent purposes.3 Constraints for Natural Language ProessingThe next part of the paper presents lasses of onstraints whih ould be used to writegrammars and to design natural language systems.3.1 Constraints on Terminal StringsThe three following onstraints bear on the terminal strings. They an be used to enhane thelogi grammar expressiveness and delarativeness. These onstraints have to be assoiatedwith the grammar rules as onstraint systems. Notie that even if they desribe relationsthat hold between items that belong to a single rule, they are global sine they onstrain thewhole syntati struture. The reason is that a syntati struture may be produed only ifit satis�es all the onstraints of the grammar rules used to derive it.3.1.1 The Preedene ConstraintThe most general and basi of the onstraints on terminal strings is the preedene one (Saint-Dizier 1991). It merely expresses the linear preedene relation and has the following form:preedes(A;B). This onstraint states that the part of the syntati struture derived from Amust linearly preede the one derived from B. We an thus write grammars in whih all thepreedene relations are expliitly stated. Their rules may have the following form:X ! Y1, : : : , Yn f preedes(Yi1 ,Yj1), : : : , preedes(Yim , Yjm)g3

Suh a rule states that X ould, for instane, be derived as the unordered list [Y1; : : : ; Yn℄(whih represents the set fY1; : : : ; Yng) provided that all the preedene onstraintspreedes(Yi1 ; Yj1), : : : , preedes(Yim ; Yjm) are satis�ed. Thus, linguists an write grammarsin whih the preedene relations are spei�ed only when neessary. This an be interest-ing, for instane, to desribe grammars for free phrase order languages in a very elegant andeonomi way. The operational semantis of the preedene onstraint has been desribed in(Saint-Dizier 1990).In addition to the preedene onstraint, it seems interesting to us to add to these gram-mars two other onstraints, namely an immediate preedene onstraint and a onnetednessone.3.1.2 The Immediate Preedene ConstraintThe immediate preedene onstraint has the following form: immediately preedes(A;B) andstates that the part of the syntati struture derived from A must preede the one derivedfrom B and that these two parts must be adjaent. We an desribe this onstraint by meansof the preedene onstraint in the following manner:immediately preedes(A, B) ()(preedes(A, B) ^ (69C: preedes(A, C) ^ preedes(C, B)))The immediate preedene onstraint onstitutes a tool for writing grammars whih is �nerthan the preedene onstraint and thus is, in many ases, more adequate than the latter.Besides, it is also stronger than the latter and thus inreases the eÆieny of the NL systemswhih use these grammars (f. 3.1.1): the stronger the onstraints are, the more eÆient thesystem is sine the searh spae pruning is more extensive. We an, for example, use thisonstraint to state that in English, a transitive verb preedes its diret objet omplementand is adjaent to it:vp -> v, np fimmediately preedes(v, np)g3.1.3 The Connetedness ConstraintThe seond onstraint that ould be added to the grammars presented in 3.1.1 is a onneted-ness one. It has the following form onneted(X), where X is either a symbol or an unorderedlist of symbols. This onstraint states that the part of the syntati struture derived fromX must be onneted, i.e. that a symbol whih is not dominated by X, annot our betweensymbols (aording to the linear preedene relation) dominated by X. The onnetednessonstraint an be used, for example, to state that a phrase must be onneted. This anbe desribed by assoiating the onstraint onneted(XP) with the rules whih desribe thephrasal elements.We an thus see that the preedene onstraint is a very basi one, and that severalothers may be de�ned on top of it. Moreover, these onstraints form a tool whih makesthe grammars more expressive and also more delarative sine preedene, adjaeny, andonnetedness relations are expliitly stated.3.2 Arithmeti and Boolean ConstraintsArithmeti and Boolean onstraints are the onstraints the more ommonly found in the CLPsystems (Colmerauer 1990, Dinbas et al. 1988, Ja�ar and Lassez 1987b). The arithmeti4

onstraints desribe relations (i.e. equations, inequalities: : :) between arithmeti typed terms.Usually, only linear arithmeti onstraints are dealt with by CLP systems. Linear arithmetionstraints seem suÆient sine natural language proessing do not involve the resolutionof very intriate arithmeti equations. These onstraints are useful, espeially for semantiproessing and to desribe lexial semantis properties. Linear arithmeti onstraints aregenerally solved with linear programming tools. The arithmeti solvers of almost all the CLPsystems are based on Simplex-like algorithms. Yet, CLP(IR), designed by Ja�ar and Lassez(1987a &1987b), also deals with non-linear onstraints thanks to a delay devie whih freezes(i.e. delays) the resolution of the non-linear onstraints until they beome linear.Other onstraints whih may help us to design NL systems are Boolean onstraints. Theymay be useful, mainly for feature manipulation, for instane in the manner proposed by FranzG�unthner (1988). We an, for instane, ompute the gender of a onjuntion of NPs in Frenhas follows. Let us hoose the feature female as gender feature (we may have hosen the featuremale as well). We then have:np(F) -> np(F1), [et℄, np(F2) fF = F1 & F2 g3.3 Long Distane Dependenies: The Pending ConstraintAnother lass of onstraints of muh interest for syntati proessing, but also for many othertypes of proessing is the expression of the long-distane relations between onstituents ina struture (syntati, semanti, transfer: : :). The notion of long-distane dependeny willbe here formulated as a o-ourrene onstraint. This onstraint emerged from the logiprogramming language Dislog presented in (Saint-Dizier 1988, Saint-Dizier 1989). Let uspresent it briey.A Dislog lause is a �nite, unordered set of Horn lauses fi of the form:ff1; : : : ; fngThe informal meaning of a Dislog lause is: if a lause fi in a Dislog lause is used to onstruta given proof tree, then all the other fjs of that Dislog lause must be used to onstrut thatproof tree, with the same substitutions applied to idential variables. Moreover, there are nohypothesis made on the loation of these lauses in the proof tree. For example, the followingDislog lause is omposed of two Prolog fats:far(a; b); ar(e; f)gThis lause means that, in a graph, the use of ar(a; b) is onditional to the use of ar(e; f),and vie-versa. If one is looking for a path in a graph, this means that all path going throughar(a; b) will have to go through ar(e; f) and onversely.A Dislog lause thus permits us to express o-ourrene of lauses in a proof tree. Theonstraint stating that all idential variables in an instane of a Dislog lause must be sub-stituted for the same terms permits the transfer of arguments values between non-ontiguouselements in a very onvenient way. A Dislog lause an be subjet to various types of restri-tions suh as: linear preedene onditions on the fis, modalities of appliation of some fis,and spei�ation of bounding domains in whih a Dislog lause instane must be fully used.The o-ourrene of two onstituents in a larger one an be expressed by the onstraintpending(A;B), where A is a grammar rule and B is an unordered list of grammar rules(Saint-Dizier 1991). Informally, this onstraint means that A originates the pending of the5

rules in B. In other words, A an be used in a derivation, only if somewhere else in thederivation (orresponding to the sentene), all the rules in B are also used with identialsubstitutions applied to idential variables. Notie that the onstraint pending does notimpose any restrition on the loation of the onstituents derived by means of the rules of B.4 The Finite Domain Constraints and their Use in GB-BasedNLPThe last lass of onstraint we would like to present is that of the �nite domain onstraintsi.e. of onstraints over variables whih range over �nite domains. The introdution of theseonstraints aims at embedding onstraint propagation tehniques inside logi programming(Van Hentenrik 1989). These tehniques are based on the idea of a priori pruning. In otherwords, the onstraints are used to redue the searh spae before disovering a failure. Thepruning is ahieved by spending more time at eah node of the searh tree, removing everyombination of values that annot appear in any solution (Freuder 1978, Makworth 1987).To illustrate the use of these onstraints, let us go over the modeling of a Government andBinding module (Chomsky 1981), namely Binding Theory1.Binding Theory onsists of three onditions. Condition A states that an anaphora must bebound in its governing ategory. Anaphors onsist of reexives suh as himself and reiproalssuh as eah other. The governing ategory of a noun phrase is a ertain domain of thesyntati struture whih ontains that noun phrase. Finally, we say that X binds Y if andonly if X -ommands Y and is o-indexed with it. For instane, in a sentene like:(2) � John believes Mary's desription of himselfiThe anaphora himself is not bound in its governing ategory. As a result, the sentene isungrammatial. On the other hand, in the sentene:(3) Mary believes Johni's desription of himselfithe anaphora is bound by Johni and the sentene an thus be grammatial. If we adoptAbney's DP-Analysis (Abney 1987), the noun phrase John's desription of himself whih isthe governing ategory of himself would have the following representation. One an easilynotie that eah of the four elements John, 's, desription, of ould be the wanted bindersine they all are dominated by the governing ategory of himself and -ommand himself.However, we an rule out three of these potential binders beause 's and of do not havemorpho-syntati features, also alled �-Features, and beause desription does not have agender feature. Notie that in (2), the four potential binders are ruled out beause Mary 'sgender does not agree with that of himself.More formally, if x is an anaphora, and if b1; : : : ; bn are the potential binders of x (i.e. thephrases that -ommand x and are dominated by the governing ategory of x), then ConditionA an be expressed as bound(x; [b1; : : : ; bn℄). This onstraint states that x must be bound byone of the members of the list [b1; : : : ; bn℄; bound(x; [b1; : : : ; bn℄) is equivalent to the followingonjuntion:binder(x; Y) ^ index (x) = index (Y) ^ �-F (x) = �-F (Y) ^ belongs(Y; [b1; : : : ; bn℄)1Pianesi (1991) presents another onstraint based modeling of Binding Theory. Besides, Fong (1990) pro-poses a related work about free indexation. 6

HHHH""""����
!!!!! HHHHHHHHHHHH������

DPof himselfP PPdesriptionN NP'sD
D0JohnDP DP

Figure 1: The governing ategory of himselfwhih states that the binder Y of x must have the same index and the same �-Features as xand must belong to the set of the potential binders of x. In this onjuntion, binder(x; Y) isan uninterpreted relation that introdues a new variable Y whih represents the binder of x.In this onjuntion is the �nite domain onstraint belongs(Y; [b1; : : : ; bn℄) states that Y mustbe one of the members of [b1; : : : ; bn℄. The set fb1; : : : ; bng is thus the �nite domain of thevariable Y, and the resolution of the onstraint belongs onsists in removing the members ofthis domain that annot have the same index and the same �-Features as x. More generally,we rule out the domain members whih annot be binders of x for one reason or another.During the syntati proess, eah time a DP x happens to be an anaphora, we have toompute the set PB of its potential binders and to posit a onstraint bound(x; PB).Binding Theory also omprises two other onditions (Conditions B and C) the modelingsof whih are essentially idential; we only present one of them here. Condition B states thata pronominal must be free in its governing ategory. Pronominals are pronouns suh as he orhim. The following sentenes show the e�ets of Condition B:(4) a. � John thinks that [GC Maryi hates heri℄b. John thinks that [GC Maryi hates herj℄In the sentene (4a), her refers to Mary and thus is bound in its governing ategory whihleads to the ungrammatiality of the sentene; we should have had John think that Maryhates herself. In the sentene (4b), her is not o-referential with Mary and the sentene isgrammatial. In partiular, the pronominal her is free in its governing ategory.So, if x is a pronominal and if b1; : : : ; bn is the set of the potential binders of x, thenCondition B an be expressed as free(x; [b1; : : : ; bn℄). This onstraint imposes that the index ofx must be di�erent from those of the members of [b1; : : : ; bn℄. Eah time we �nd a pronominal,we must posit a onstraint free orresponding to that noun phrase.To end this last part, let us notie that the type of modeling we presented for BindingTheory may be used to model almost all the GB priniples (Hathout 1991). We only have7

��
��

���+
������

��������������
�� GC(x)

xbnb4b3b2b1
Figure 2: The potential binders of xto replae the set of the potential binders by that of the potential anteedents, governers,ontrolers: : :5 ConlusionTo summarize, we ould say that:� Constraint logi programming o�ers a global rule-based framework to handle on-straints.� CLP assoiates uni�ation, Robinson's resolution and onstraint solving.� The CLP program are fully delarative and soundly based within a uni�ed frameworkof formal semantis.� They exhibit a great expressive power and a great ease of use sine onstraints an bestated at any time.ReferenesAbney S. P. (1987). The English Noun Phrase in its Sentential Aspet. PhD thesis, MIT,Cambridge, Mass., 1987.Chomsky N. (1981). Letures on Government and Binding, volume 9 of Studies in Gener-ative Grammar. Foris, Dordreht, 1981.Cohen J. (1990). \Constraint Logi Programming Languages." Communiations of theACM, 33(7):52{68, July 1990.Colmerauer A. (1990). \An Introdution to Prolog III." Communiations of the ACM,33(7):69{90, July 1990. 8

Dinbas M., Van Hentenrik P., Simonis H., Aggoun A., Graf T., and Berthier F. (1988).\The Constraint Logi Programming Language CHIP." In Proeedings of the InternationalConferene on Fifth Generation Computer Systems, pages 693{702, Tokyo, 1988. ICOT.Fong S. (1990). \Free Indexation: Combinatorial Analysis and A Compositional Algo-rithm." In Proeedings of the twenty eighth Annual Meeting of the Assoiation for Com-putational Linguistis, pages 105{110, Pittzburg, Pe., 1990.Freuder E. C. (1978). \Synthetizing Constraint Expressions." Communiations of theACM, 21(11):958{966, November 1978.G�unthner F. (1988). \Features and Values 1988." Tehnial Report SNS-Beriht 88{40,T�ubingen University, T�ubingen, 1988.Hathout N. (1991). \Some Aspets of GB-Parsing within the CLP Framework." In Pro-eedings of the ICLP'91 Workshop on Advaned Logi Programming Tools and Formalismsfor Language Proessing, pages 86{99, Paris, 1991.Ja�ar J. and Lassez J.-L. (1987a). \Constraint Logi Programming." In Proeedings of theFourteenth ACM Symposium of the Priniples of Programming Languages, pages 111{119,Munih, 1987. ACM.Ja�ar J. and Lassez J.-L. (1987b). \From Uni�ation to Constraints." In Proeedings ofthe SLPT Workshop, pages 543{560, Lannion, Frane, 1987. CNET.Makworth A. K. (1987). \Constraint Satisfation." In Shapiro S., editor, Enylopedia ofArti�ial Intelligene, pages 205{211. Wiley-Intersiene Publiation, New-York, 1987.Pianesi F. (1991). \Indexing and Referential Dependenies within Binding Theory: AComputational Framework." In Proeedings of the European Chapter of the Assoiationfor Computational Linguistis, pages 39{44, Berlin, 1991. ACL.Saint-Dizier P. (1988). \Foundations of Dislog, Programming in Logi with Disontinu-ities." In Proeedings of the International Conferene on Fifth Generation Computer Sys-tems, Tokyo, 1988. ICOT.Saint-Dizier P. (1989). \Constrained Logi Programming for Natural Language Proess-ing." In Proeedings of the European Chapter of the Assoiation for Computational Lin-guistis, Manhester, 1989.Saint-Dizier P. (1990). On Logi Programming Interpretation of Dislog: ProgrammingDisontinuities in Logi. Leture Notes in Computer Siene. Springer Verlag, Otober1990.Saint-Dizier P. (1991). \Proessing Language with Types and Ative Constraints." InProeedings of the European Chapter of the Assoiation for Computational Linguistis,Berlin, 1991.Van Hentenrik P. (1989). Constraint Satisfation in Logi Programming. MIT Press,Cambridge, Mass., 1989. 9

