Spare us the surprise

The interplay of paradigmatic predictability and frequency

Maria Copot Olivier Bonami ISMo 2021

Université de Paris, LLF

Introduction

- A known inverse link between frequency and paradigmatic predictability of a word form (Wu, Cotterell & O'Donnell, 2019; Marcus et al. 1992; Bybee, 1985):
 - Paradigmatically unpredictable word forms (suppletives/irregulars) tend to be frequent
 - Infrequent lexemes tend to have predictable word forms

Uncertainty, frequency and memory

- The more high frequency a word form, the more it can afford to be paradigmatically unpredictable.
 - The unpredictable word form can be well anchored in memory thanks to its frequency

Uncertainty, frequency and memory

- If a paradigmatically unpredictable word is infrequent/in an infrequent context...
 - Regularisation (Eng. *helped* ← *holp*) (Lieberman et al. 2007)
 - Avoidance (forego → foregoed?/forewent?) (Albright, 2003; Sims, 2015)
 - If a whole context is infrequent and a locus of low predictability, it may drop out of use (It. *passato remoto*)

- A negative correlation between frequency and predictability
- For an unpredictable form to survive, it must be frequently attested
- Words can't afford to be both syntagmatically and paradigmatically unpredictable (Filipović Đurđević & Milin, 2019)
 - Frequent words are an expected way to continue a sentence (= syntagmatically more predictable), so they can tolerate paradigmatic uncertainty.

- When producing a sentence, we incrementally have to find words that
 - 1. are inflectionally appropriate (e.g. have the correct agreement, are the correct part of speech: *she eats/*eat dinner*)
 - 2. are an appropriate lexical choice (contribute the intended lexical semantics: *she eats/*coagulates dinner*)

- At each word boundary, the inflectional requirements are often clear
 - "You should beware of the dog!" "Indeed, yesterday, I ____ (it)!" needs a past tense form.
- Several appropriate lexemes (HEED, BEWARE OF, WATCH OUT FOR). Some parameters for the choice:
 - Overall strength of the lexeme's mental representation (a function of recency, frequency in input, salience given context...)
 - The ease of accessibility of the necessary form of the lexeme (a function of predictability)

- How does paradigmatic predictability impact token frequency?
- The hypothesis:
 - at parity of lexeme frequency, less paradigmatically predictable words will be used less frequently.
 - The more frequent a lexeme, the less predictability will matter for frequency of use (frequent words need to be retrieved from memory rather than actively predicted)

- Several aspects of form predictability may be relevant to token frequency. e.g.:
 - 1. Local entropy: the uncertainty surrounding how to fill a given cell
 - 2. Surprisal: the predictability of the particular form actually filling the cell
 - PRS fling \rightarrow PST flung
- Following a corpus study, we conclude that the measure relevant for written production is surprisal How to operationalise?

- Need to measure:
 - given knowledge of the rest of the paradigm...
 - how confident should a speaker be that they are producing the right form in the necessary cell?
- This is clearly a variant of the Paradigm Cell Filling Problem (Ackerman, Blevins & Malouf, 2009; Ackerman & Malouf, 2013).

• We rely on a purely **word-based** approach to the PCFP of Bonami & Beniamine (2016)

Operationalising surprisal

- Beniamine's (2018) Qumin package was used for all computations.
- Intuitively: conditional probability of output form given the phonological ٠ shape of the input form
- Surprisal is computed over **pairs of cells** (C1 \rightarrow C2). For a given form pair...
 - Find all patterns compatible with the input form
 - $X = \frac{type freq. of instantiated pattern}{type freq. of all applicable patterns}$
 - Turn it into bits: $-loq_2(x)$

```
1PL IND PRES sortons \rightarrow PST PART 
sortu?
```

PATTERN	PATTERN TYPE FREQUENCY	SURPRISAL
Xons ~Xé	most lexemes	0.06
Xons ~Xu	\sim 15 lexemes	4.7
Xons ~Xi	\sim 5 lexemes	7.2

• Average over predictor cells *c* to get an overall estimation of how surprising *c*' is given the rest of the paradigm.

- Ideally, this should be weighted by cell frequency.
 - But we do not have quality estimations of cell frequency, because of pervasive syncretism.
 - For lack of a better solution we use unweighted frequency.

- We set out to confirm that paradigmatic surprisal has a negative effect on token frequency throughout the lexicon.
- And that the effect is reversed for high-frequency lexemes.
- Case study: French verbal cells

- For the items within each cell, we constructed a model of the shape
 - token frequency \sim surprisal + lexeme frequency + surprisal:lexeme frequency
- The value of surprisal we employ is the **average surprisal** of the given form based on each of the other forms in the paradigm.
- Lemma frequency is included as a control variable (= familiarity)
- The interaction: test the intuition that for high values of lemma frequency, surprisal matters less (words with a strong representation in memory don't need to be predicted)
- Separate bayesian poisson regressions with weakly-informative priors were fitted to the data in each cell.

- Resources used:
 - Frequency counts: FrCoW (Schäfer & Bildhauer, 2016) for token and lemma counts.
 - Paradigms & excluding homographs: GLàFF (Hatout, Sajous & Calderone, 2014)
 - Surprisal: values computed using Qumin (Beniamine, 2018) on the Flexique verb dataset (Bonami, Caron & Plancq, 2014)

- Which cells in the paradigm of French verbs can we work with?
- Working with our dataset, we exclude...

Finite forms											
1SG 2SG 3SG 1PL 2PL 3PL											
IND.PRS	2	3	183	2	5	14					
IND.IPFV	0	0	5083	10	10	5076					
IND.PST	4484	4448	4694	5116	5116	5101					
FUT	5211	5207	5213	5190	5212	5221					
SBJV.PRS	0	250	2	8	7	13					
SBJV.IPFV	4701	4725	5119	4726	4738	4740					
COND	0	0	5220	5212	5212	5215					
IMP	-	0	-	2	2	-					

	Nonfinite forms									
INF	PRS PTCP		PST.F	PTCP						
	11011101	M.SG	F.SG	M.PL	F.PL					
5006	4311	3935	3055	2903	3199					

- Which cells in the paradigm of French verbs can we work with?
- Working with our dataset, we exclude...
 - cells with high numbers of homographs according to the GLÀFF;

Finite forms											
15G 25G 35G 1PL 2PL 3PL											
IND.PRS	2	3	183	2	5	14					
IND.IPFV	0	0	5083	10	10	5076					
IND.PST	4484	4448	4694	5116	5116	5101					
FUT	5211	5207	5213	5190	5212	5221					
SBJV.PRS	0	250	2	8	7	13					
SBJV.IPFV	4701	4725	5119	4726	4738	4740					
COND	0	0	5220	5212	5212	5215					
IMP	-	0	-	2	2	-					

Nonfinite forms										
INF	DDS DTCD		PST.F	РТСР						
	110.1101	M.SG	F.SG	M.PL	F.PL					
5006	4311	3935	3055	2903	3199					

Data selection

- Which cells in the paradigm of French verbs can we work with?
- Working with our dataset, we exclude...
 - cells with high numbers of homographs according to the GLÀFF;
 - cells out of current usage (i.e. most attestations are likely to be archaic);

Finite forms											
15G 25G 35G 1PL 2PL 3PL											
IND.PRS	2	3	183	2	5	14					
IND.IPFV	0	0	5083	10	10	5076					
IND.PST	4484	4448	4694	5116	5116	5101					
FUT	5211	5207	5213	5190	5212	5221					
SBJV.PRS	0	250	2	8	7	13					
SBJV.IPFV	4701	4725	5119	4726	4738	4740					
COND	0	0	5220	5212	5212	5215					
IMP	-	0	-	2	2	-					

Nonfinite forms										
INF	DDS DTCD	PST.PTCP								
	110.1101	M.SG	F.SG	M.PL	F.PL					
5006	4311	3935	3055	2903	3199					

Data selection

- Which cells in the paradigm of French verbs can we work with?
- Working with our dataset, we exclude...
 - cells with high numbers of homographs according to the GLÀFF;
 - cells out of current usage (i.e. most attestations are likely to be archaic);
 - past participle cells, for which tagging is inherently unreliable.

Finite forms											
1SG 2SG 3SG 1PL 2PL 3PL											
IND.PRS	2	3	183	2	5	14					
IND.IPFV	0	0	5083	10	10	5076					
IND.PST	4484	4448	4694	5116	5116	5101					
FUT	5211	5207	5213	5190	5212	5221					
SBJV.PRS	0	250	2	8	7	13					
SBJV.IPFV	4701	4725	5119	4726	4738	4740					
COND	0	0	5220	5212	5212	5215					
IMP	-	0	-	2	2	-					

Nonfinite forms										
		PST.PTCP								
	110.1101	M.SG	F.SG	M.PL	F.PL					
5006	4311	3935	3055	2903	3199					

• The selected cells correspond to 3 areas of high interpredictability.

FUT.1SG -	0	0	0	0	0	0	0	0	0	0	0.24	0.24	0.24	0.23
FUT.2SG -	0	0	0	0	0	0	0	0	0	0	0.24	0.24	0.24	0.23
FUT.3SG -	0	0	0	0	0	0	0	0	0	0	0.24	0.24	0.24	0.23
FUT.1PL-	0	0	0	0	0	0	0	0	0	0	0.24	0.24	0.24	0.23
FUT.2PL-	0	0	0	0	0	0	0	0	0	0	0.24	0.24	0.24	0.23
FUT.3PL-	0	0	0	0	0	0	0	0	0	0	0.24	0.24	0.24	0.23
COND.3SG -	0	0	0	0	0	0	0	0	0	0	0.24	0.24	0.24	0.23
COND.1PL -	0	0	0	0	0	0	0	0	0	0	0.24	0.24	0.24	0.23
COND.2PL -	0	0	0	0	0	0	0	0	0	0	0.24	0.24	0.24	0.23
COND.3PL -	0	0	0	0	0	0	0	0	0	0	0.24	0.24	0.24	0.23
IPFV.3SG -	0.35	0.34	0.34	0.34	0.35	0.34	0.35	0.33	0.33	0.35	0	0	0.0004	0.34
IPFV.3PL-	0.35	0.34	0.34	0.34	0.35	0.34	0.35	0.33	0.33	0.35	0	0	0.0004	0.33
PRS.PTCP -	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.33	0.33	0.34	0	0	0	0.32
INF -	0.059	0.059	0.059	0.059	0.059	0.059	0.059	0.059	0.059	0.059	0.076	0.077	0.074	0
	FUT.1SG-	FUT.25G-	FUT.3SG -	FUT.IPL-	FUT.2PL-	FUT.3PL-	OND.35G -	COND. IPL -	COND.2PL -	COND.3PL -	IPFV.3SG-	IPFV.3PL-	PRS.PTCP -	INF -

Implicative entropy (Bonami & Beniamine, 2016) between selected cells

Predictions

log lemma frequency

Predictions

Predictions

- Lemma frequency has a uniform positive effect on token frequency in all cells.
- Surprisal had a negative effect in 12/14 cells, an effect indistiguishable from 0 in 1/14, and an unexpected positive effect in 1/14.
- The interaction between surprisal and lemma frequency had a positive coefficient in 11/14 cells and an effect indistiguishable from 0 in 1/14. 2/14 have unexpected negative coefficients.
- Overall, 11/14 cells behaved exactly as predicted, two behaved counter to expectations and one showed non-significant impact for surprisal and surprisal:lemma

Model Output - Coefficients

Cell	Lemma freq.	Surprisal	Interaction
FUT.1SG	0.9935	-0.3783	0.0675
FUT.2SG	1.0771	-0.2306	0.0447
fut.3sg	1.1764	-0.0261	0.0073
FUT.1PL	0.9693	-0.1932	0.0415
FUT.2PL	1.1072	-0.3368	0.0647
fut.3pl	1.1466	-0.0040	0.0088
cond.3sg	1.2509	-1.0392	0.1835
COND.1PL	1.2544	-1.7739	0.2876
cond.2pl	1.2583	-2.7622	0.4486
cond.3pl	1.2312	-1.3889	0.2404
IPFV.3SG	1.1707	-0.0441	-0.0010
IPFV.3PL	0.9352	-0.5588	0.0959
PRS.PTCP	0.5916	0.0545	0.0053
INF	0.9438	0.0620	-0.0089

Unexpected coefficient sign
 95% Credible interval overlaps with zero

21

- **Cells that didn't conform to predictions:** infinitive, imperfect 3sg, present participle.
- These are by far the three most frequent cells in the dataset.
- Hypothesis: the effect of surprisal is therefore nullified at the level of the whole cell (same mechanism for frequent lexemes)
 - while the coefficients for surprisal and the interaction have unexpected monotonicity, their value is much smaller compared to other cells, and very close to 0 (for pres. part. it is indistinguisheable from 0)

- Overall, token frequency is negatively impacted by paradigmatic form predictability.
 - The pattern is reversed for items of high lemma frequency.
 - High frequency lexemes are more familiar to speakers, so the predictability of their word forms matters less for access/usage
- The method performs well on 11/14 cells, and the exceptions exist for principled reasons.
 - Showcases the **importance of paradigmatic information** in predicting frequency.
 - Frequent contexts and lexemes diminish the importance of paradigmatic predictability.

- Obtaining a **good estimate of cell frequency** (existing resources yield poor estimates, especially for the person dimension)
 - It would allow a weighed average of surprisal to be used
 - It would help interpret outlying results.
- Currently exploring the Italian verbal system with the same method (less homography)
 - Results going in roughly the same direction, some kinks to iron out
- Testing the general effect of surprisal psycholinguistically.
 - Speakers appear sensitive to paradigmatic surprisal between individual nonwords.

- Ackerman, Farrell, James P. Blevins & Robert Malouf (2009). "Parts and wholes: implicative patterns in inflectional paradigms". in: Analogy in Grammar. byeditorJames P. Blevins & Juliette Blevins. Oxford: Oxford University Press, pages 54–82 (backrefpage 12).
- Ackerman, Farrell & Robert Malouf (2013). "Morphological organization: the low conditional entropy conjecture". in: Language 89, pages 429–464 (backrefpage 12).
- Albright, Adam (2003). "A quantitative study of Spanish paradigm gaps". in: WCCFL22 Proceedings. byeditorG. Garding & M. Tsujimura. Sommervile, MA: Cascadilla Press, pages 1–14 (backrefpage 6).
- Beniamine, Sacha (2018). "Typologie quantitative des systèmes de classes flexionnelles". phdthesis. Université Paris Diderot (backrefpages 13, 17).
- Bonami, Olivier & S. Beniamine (2016). "Joint predictiveness in inflectional paradigms". in: Word Structure 9.2, pages 156–182 (backrefpages 12, 22).
- Bonami, Olivier, Gauthier Caron & Clément Plancq (2014). "Construction d'un lexique flexionnel phonétisé libre du français". in: Actes du quatrième Congrès Mondial de Linguistique Française. byeditorFranck Neveu et al. pages 2583–2596 (backrefpage 17).

References ii

- Bybee, Joan L. (1985). "Morphology. A study of the relation between meaning and form.". in: Typological Studies in Language 9.2, pages 493–496 (backrefpage 4).
- Filipović Đurđević, Dušica & Petar Milin (2019). "Information and learning in processing adjective inflection". in: *Cortex* 116. Structure in words: the present and future of morphological processing in a multidisciplinary perspective, **pages** 209–227. ISSN: 0010-9452. URL: https://www.sciencedirect.com/science/article/pii/S0010945218302375 (backrefpage 7).
- Lieberman, Erez et al. (2007). "Quantifying the evolutionary dynamics of language". in: *Nature* 449.7163, pages 713–716. ISSN: 1476-4687. URL: https://doi.org/10.1038/nature06137 (backrefpage 6).
- Marcus, Gary F. et al. (1992). "Overregularization in Language Acquisition". in: Monographs of the Society for Research in Child Development 57.4, pages i–178. ISSN: 0037976X, 15405834. URL: http://www.jstor.org/stable/1166115 (backrefpage 4).
- Sims, Andrea (2015). *Inflectional defectiveness*. Cambridge: Cambridge University Press (backrefpage 6).
- Wu, Shijie, Ryan Cotterell & Timothy J. O'Donnell (2019). "Morphological Irregularity Correlates with Frequency". in: CoRR abs/1906.11483. arXiv: 1906.11483. URL: http://arxiv.org/abs/1906.11483 (backrefpage 4).