Derivational paradigmatic models put to test on some non-canonical phenomena

Nabil Hathout^a and Fiammetta Namer^b

^aCLLE, CNRS & Université Toulouse Jean Jaurès ^bUniversité de Lorraine & ATILF, CNRS

ISMO 2021. 22-24 September 2021

Introduction

Four models in the race

Non-canonical derivation

Results

Conclusion

Contestants: Four paradigm-based or paradigm-oriented derivational frameworks are compared:

- Construction Morphology (CxM) [Booij, 2010]
- Cumulative Patterns (CP) [Bochner, 1993]
- Paradigmatic Systems (PS) [Bonami & Strnadová, 2019]
- Paradigms vs Discrepancies (ParaDis) [Hathout & Namer, 2016]

Benchmark: The comparisons focus on their ability to:

- account for meaning-form discrepancies
- represent non-canonical derivation (defectiveness, suppletion, doublets)

- We use the following example from [Bonami&Strnadová2019] as dataset for our benchmarking study.
- In each family, members in the same column are in the same semantic relations: (metaphorical) place and agent nouns, relational adjectives, locative verbs.

commerce	commerçant	commercial	commercialiser
'market'	'shopkeeper'	'commercial'	'to (put on) market'
école	écolier		
'school'	'schoolboy'		
		scolaire	scolariser
		'educational'	'to send to school'
prison	prisonnier		emprisonner
'prison'	'inmate'		'to imprison'
		carcéral	incarcérer
		'of prison'	'to imprison'

Form-meaning discrepancy is illustrated with the family of commercialiser, formally derived from the adjective commercial, but semantically defined with respect to the noun commerce.

commerce	commerçant	commercial	commercialiser
'market'	'shopkeeper'	'commercial'	'to (put on) market'
école	écolier		
'school'	'schoolboy'		
		scolaire	scolariser
		'educational'	'to send to school'
prison	prisonnier		emprisonner
'prison'	'inmate'		'to imprison'
		carcéral	incarcérer
		'of prison'	'to imprison'

An example of defectiveness is given by the lack of relational adjective formally derived from *prison*.

commerce	commerçant	commercial	commercialiser
'market'	'shopkeeper'	'commercial'	'to (put on) market'
école	écolier		
'school'	'schoolboy'		
		scolaire	scolariser
		'educational'	'to send to school'
prison	prisonnier	0	emprisonner
'prison'	'inmate'		'to imprison'
		carcéral	incarcérer
		'of prison'	'to imprison'

- A case of suppletion is given by scolaire, scolariser, where the latinate stem /skol/ is used instead of /ekol/.
- Suppletion entails defectiveness: the families of *école* and *scolaire* are defective.

commerce	commerçant	commercial	commercialiser
'market'	'shopkeeper'	'commercial'	'to (put on) market'
école	écolier		
'school'	'schoolboy'		
		scolaire	scolariser
		'educational'	'to send to school'
prison	prisonnier		emprisonner
'prison'	'inmate'		'to imprison'
		carcéral	incarcérer
		'of prison'	'to imprison'

Data

- {incarcérer, emprisonner} is an example of verb doublet. incarcérer is derived from the suppletive stem /kauseu/ of prison.
- ▶ In this family, defectiveness, suppletion and doublet.

commerce	commerçant	commercial	commercialiser
'market'	'shopkeeper'	'commercial'	'to (put on) market'
école	écolier		
'school'	'schoolboy'		
		scolaire	scolariser
		'educational'	'to send to school'
prison	prisonnier		emprisonner
'prison'	'inmate'		'to imprison'
		carcéral	incarcérer
		'of prison'	'to imprison'

We also want to test each model wrt to their ability to explicitly represent paradigm-based structures, that is:

- derivational families
- concrete paradigms as superposition of aligned derivational families
- abstract paradigms as the corresponding network of relations between patterns
- paradigmatic levels and generalization of paradigmatic organization

Introduction

Four models in the race

Non-canonical derivation

Results

Conclusion

Construction Morphology (CxM), [Booij, 2010]

- Constructional schemas associate the formal and semantic properties of (complex) words/word patterns
- They represent both lexemes and word formation processes.
- Coindexations connect the derived lexemes to their base

- Constructions are part of a hierarchical lexicon
- Inheritance relations can be used to describe affix rivalry

Inheritance Relations

$$< [[x]_{Vi} suf]_{Nj} \leftrightarrow A : [act of [SEM]_i]_j >$$

 $< [[x]_{Vi} -age]_{Nj} \leftrightarrow A > < [[x]_{Vi} -ment]_{Nj} \leftrightarrow A > < [[x]_{Vi} -ion]_{Nj} \leftrightarrow A >$

Construction Morphology (CxM), [Booij, 2010]

Second order schemas (\approx) are used to describe indirect relations

laveur 'washer'/lavage 'washing'

 $<[[x]_{\mathit{Vi}} \text{ -eur}]_{\mathit{Nj}} \leftrightarrow [\mathsf{he \ who} \ [\mathsf{SEM}]_i]_j > \thickapprox <[[x]_{\mathit{Vi}} \ \mathit{age}]_{\mathit{Nk}} \leftrightarrow [\mathsf{act \ of} \ [\mathsf{SEM}]_i]_k >$

We can represent derivational families and create paradigmatic representations by generalizing second orders schemas

Paradigmatic Representation: {laver, laveur, lavage} $< [x]_{Vi} \leftrightarrow [SEM]_i > \approx < [[x]_{Vi} - eur]_{Nj} \leftrightarrow [he who [SEM]_i]_j > \approx < [[x]_{Vi} age]_{Nk} \leftrightarrow [act of [SEM]_i]_k >$ Derivational families are Cumulative Sets (CSs), where words are connected in undirected relations,

Two CSs: laver 'to wash', saler 'to salt'

{laver, lavage, laveur}

{saler, salage, saleur}

- Relations in CSs are instances of relations between patterns
- Semantic and formal sharing in CSs is ensured by variable sharing in the corresponding abstract relation.

Relation between abstract patterns

$$\begin{bmatrix} X/ \\ V \\ 'Z' \end{bmatrix} \leftrightarrow \begin{bmatrix} X - age/ \\ N \\ 'act of Z' \end{bmatrix}, \begin{bmatrix} X/ \\ V \\ 'Z' \end{bmatrix} \leftrightarrow \begin{bmatrix} X - eur/ \\ N \\ 'he who Z' \end{bmatrix}, \begin{bmatrix} X/ & -eur/ \\ N \\ 'act of Z' \end{bmatrix} \leftrightarrow \begin{bmatrix} X - eur/ \\ N \\ 'he who Z' \end{bmatrix}$$

Cumulative Patterns (CP), [Bochner,1993]

 Relations btw abstract patterns form a complete graph. Therefore they can be aggregated in an abstract set: Cumulative Pattern (CP).

Cumulative pattern

$$\left\{ \left[\begin{array}{c} /X/\\ V\\ 'Z' \end{array} \right], \left[\begin{array}{c} /X \text{ -age} /\\ N\\ \text{`act of } Z' \end{array} \right], \left[\begin{array}{c} /X \text{ -eur} /\\ N\\ \text{`he who } Z' \end{array} \right] \right\}$$

- Relations between patterns are evaluated by an *evaluation metric* in terms of productivity.
- Hierarchy relations between CPs are possible, but their relevance is limited because of the loss of predictability
- Affix rivalry is not represented because it causes a loss of predictability

Paradigmatic Systems (PS), [Bonami&Strnadová,2019]

- Morphological families are complete graphs of morphologically related words
- Morphological paradigms are superposition of morphological families whose elements are connected by the same relations of content-based contrasts.
- Families are all the same size
- There is a systematic content-based contrast between all pairs of cells.
 - contrast of forms is secondary

Verb	Agent_N	Action_N
laver	laveur	lav <mark>age</mark>
former	formateur	form <mark>ation</mark>
gonfler	gonfleur	gonfl <mark>ement</mark>

ParaDis: Families

'to	'act of wash-	'he who
wash'	ing'/'act	washes'/'he
	performed	who per-
	by a washer'	forms wash-
	-	ing'

 ◇ Family is the basic unit
 ◇ Families are generalized to all the levels relevant to morphology
 ◇ 4 independent dimensions: formal, categorial, semantic, morphological

LAVER	LAVAGE	LAVEUR
-------	--------	--------

1

ParaDis: Paradigms

F1	F2	F3
$/f_{1}/$	/f ₁ -a ₃ /	/f1-œв/
/lav/	/lavaʒ/	/lavœr/
(F1,1)	(F2,1)	(F3,1)
/sal/	/sala ₃ /	/salœr/
(F1,2)	(F2,2)	(F3,2)

S1	S2	S3
ʻ <i>s</i> 1'	'act (of <i>s</i> ₁ '/performed	'he who (s_1 '/ per-
	by <i>s</i> ₃ ')	forms <i>s</i> ₂ ')
'to	'act (of wash' / per-	'he who (washes' /
wash'	formed by a washer')	performs washing')
(S1,1)	(S2,1)	(S3,1)
'to	'act of salt' / 'act	'he who salts' / 'he
salt'	performed by a salter'	who performs salt-
(S1,2)	(S2,2)	ing' (S3,2)

♦ Concrete paradigms: superposition of families with members in the same relations of contrast

- ♦ Aligned members form series
- ♦ Abstract paradigms form graphs
- of relations btw patterns
 - \diamond (S1,S2,S3) forms a complete graph

 \diamondsuit In (F1,F2,F3) F2 and F3 are not connected

♦ (Categorial families and paradigm omitted here)

M1	M2	M3
LAVER	LAVAGE	LAVEUR
(M1,1)	(M2,1)	(M3,1)
SALER	SALAGE	SALEUR
(M1,2)	(M2,2)	(M3,2)

ParaDis: Correspondences

ParaDis: Derivational Paradigms

				S1	S2	S3
				ʻ <i>s</i> 1'	'act of <i>s</i> ₁ '/'act	'he who s_1' /
					performed by	'he who per-
					s 3'	forms <i>s</i> ₂ '
				'to	'act of launch-	ʻhe who
M4	M5		M6	launch'	ing' / 'act per-	launches' / 'he
LANCER	LANG	CEMENT	LANCEUR		formed by the	who performs
RONFLE	R RON	FLEMENT	RONFLEUR		launcher'	launching'
				'to	'act of wash-	ʻhe who
M1	M2	M3		wash'	ing' / 'act per-	washes' / 'he
LAVER	LAVAGE	LAVEU	R		formed by the	who performs
SALER	SALAGE	SALEUI	2		washer'	washing'
					unhala gigal navadig	
		/	/		rphological paradig	ins sharing the
				same	semantic paradigm	can be super-
				posed	into a derivationa	paradigm
		/		_	Paradigm of par	adigms''

 \diamond (M1,M2, M3) and (M4, M5, M6) are in correspondence with (S1,S2,S3) \diamond They form a Derivational Paradigm

Derivational Paradigm

M2

M5

M3

M6

M1

M4

	CxM	CP	PS	ParaDis
Families	(√)	\checkmark	\checkmark	\checkmark
Concrete paradigms			\checkmark	\checkmark
Abstract paradigms	\checkmark	\checkmark	?	\checkmark
Generalization of Paradig-				\checkmark
matic Organisation				

Introduction

Four models in the race

Non-canonical derivation

Results

Conclusion

Have a separate access to the verbal formal and semantic description

CxM - multiple coindexation system

CxM

$$< [[[x]_{Ni} - al]_{Aj} - iser]_{Vw} \leftrightarrow [related to [SEM]_i]_w >$$

Form-Meaning Discrepancies

Have a separate access to the verbal formal and semantic description

CP - multiple variable sharing

СР

$$\left\{ \left[\begin{array}{c} /X/\\ N\\ 'Z' \end{array} \right], \left[\begin{array}{c} /Y = /X \text{ -al}/\\ A\\ '\text{related to } Z' \end{array} \right], \left[\begin{array}{c} /Y \text{ -iser}/\\ V\\ '\text{put on } Z' \end{array} \right] \right\}$$

Form-Meaning Discrepancies

Have a separate access to the verbal formal and semantic description

PS - paradigms are semantic-based, discrepancies are ignored

ParaDis - form and meaning are represented at independent levels

Represent incomplete families

école	écolier		
commerce	commerçant	commercial	commercialiser

- CxM no
- CP no
- PS Families are made of sets of lexemes (and not lexemes). A gap in a defective family is an empty set.

$$\{ école \} \quad \{ écolier \} \quad \{ \} \quad \{ \}$$

Represent incomplete families

école	écolier		
commerce	commerçant	commercial	commercialiser

ParaDis - Different morphological paradigms, the same semantic paradigm: superposition in the same derivational paradigm. Gaps revealed at paradigm-level.

ParaDis	M13	M14		
	ÉCOLE	ÉCOLIER		
	M9	M10	M11	M12
	COMMERCE	COMMERÇANT	COMMERCIAL	COMMERCIALISER

Represent differences and relatedness

CxM - independent variables, same semantic content

CxM

 $< [x]_{Ni} \leftrightarrow [\mathsf{SEM}]_i > \approx < [[x]_{Ni} \text{ -ier}]_{Nj} \leftrightarrow [\mathsf{sme in relation with } [\mathsf{SEM}]_i]_j > \approx \\ < [[y]_{Ni} \text{ -aire}]_{Ak} \leftrightarrow [\mathsf{related to } [\mathsf{SEM}]_i]_k > \approx \\ < [[[y]_{Ni} \text{ -aire}]_{Ak} \text{ -iser}]_{Vw} \leftrightarrow [\mathsf{put to } [\mathsf{SEM}]_i]_w >$

Represent differences and relatedness

école	écolier		
		<mark>scol</mark> aire	scolariser

CP - independent formal variables, same semantic variable

СР

$$\left\{ \left[\begin{array}{c} /X/\\ N\\ 'Z' \end{array} \right], \left[\begin{array}{c} /X \text{ -ier}/\\ N\\ \text{`sme in relation}\\ \text{with } Z' \end{array} \right], \left[\begin{array}{c} W = /Y \text{ -aire}/\\ A\\ \text{`related to } Z' \end{array} \right], \left[\begin{array}{c} /W \text{ -iser}/\\ V\\ \text{`put to } Z' \end{array} \right] \right\}$$

Suppletion

Represent differences and relatedness

école	écolier		
		<mark>scol</mark> aire	scolariser

- PS not relevant (secondariness of formal contrasts)
- ParaDis different morphological families and paradigms but the same semantic paradigm and even the same semantic family
 - superposed in the same derivational paradigm.

ParaDis]	M15	M16
		·	SCOLAIRE	SCOLARISER
	M13	M14		
	ÉCOLE	ÉCOLIER		
	M9	M10	M11	M12
	COMMERCE	COMMERÇANT	COMMERCIAL	COMMERCIALISER

Represent differences, semantic identity and same cell position in the family $% \left({{{\left[{{{c_{{\rm{m}}}}} \right]}_{{\rm{m}}}}} \right)$

prison	prisonnier		emprisonner
		carcéral	incarcérer

CxM - second order schema with the same semantic content

 $\begin{aligned} \mathsf{CxM} \\ < [\mathsf{en-}\ [x]_{Ni}]_{Vj} \leftrightarrow [\mathsf{put}\ \mathsf{in}[\mathsf{SEM}]_i]_j > & \\ & < [\mathsf{in-}\ [y]_{Ni}]_{Vk} \leftrightarrow [\mathsf{put}\ \mathsf{in}[\mathsf{SEM}]_i]_k > \end{aligned}$

Represent differences, semantic identity and same cell position in the family

prison	prisonnier		emprisonner
		carcéral	incarcérer

CP - 5-members CS with the same semantic content

СР

$$\left\{ \left[\begin{array}{c} /X/\\ N\\ 'Z' \end{array} \right], \left[\begin{array}{c} /X \text{ -ier}/\\ N\\ \text{`sme in relation}\\ \text{with } Z' \end{array} \right], \left[\begin{array}{c} /Y \text{ -al}/\\ A\\ \text{`related}\\ \text{to } Z' \end{array} \right], \left[\begin{array}{c} /in \text{ - } Y/\\ V\\ \text{`put}\\ \text{in } Z' \end{array} \right], \left[\begin{array}{c} /en \text{ - } X/\\ V\\ \text{`put}\\ \text{in } Z' \end{array} \right] \right\}$$

Represent differences, semantic identity and same cell position in the family $% \left({{{\left[{{{c_{{\rm{m}}}}} \right]}_{{\rm{m}}}}} \right)$

prison	prisonnier		emprisonner
		carcéral	incarcérer

PS - in the same two-element set

PS

{prison}	{prisonnier}	{carcéral}	{ emprisonner incarcérer }
Thurson			

n-uplets

Represent differences, semantic identity and same cell position in the family

prison	prisonnier		emprisonner
		carcéral	incarcérer

ParaDis - different morphological families and paradigms, but same semantic paradigm, the same family, and verbs in the same semantic cell

superposed in the same derivational paradigm

ParaDis	M19	M20		M21
	PRISON	PRISONNIER		EMPRISONNER
			M17	M18
			CARCÉRAL	INCARCÉRER
			M15	M16
			SCOLAIRE	SCOLARISER
	M13	M14		
	ÉCOLE	ÉCOLIER		
	M9	M10	M11	M12
	COMMERCE	COMMERÇANT	COMMERCIAL	COMMERCIALISER

Introduction

Four models in the race

Non-canonical derivation

Results

Conclusion

	CxM	CP	PS	ParaDis
Families	(√)	\checkmark	\checkmark	\checkmark
Concrete paradigms			\checkmark	\checkmark
Abstract paradigms	\checkmark	\checkmark	?	\checkmark
Generalization of Paradigmatic				\checkmark
Organization				
Form-Meaning Discrepancies	\checkmark	\checkmark		\checkmark
Defectiveness			\checkmark	\checkmark
Suppletion	\checkmark	\checkmark		\checkmark
<i>n</i> -uplets	\checkmark	\checkmark	\checkmark	\checkmark

Introduction

Four models in the race

Non-canonical derivation

Results

Conclusion

- This is a first attempt to compare derivational paradigm-based models
- ▶ We have selected four models different enough from each other
- We have selected (some) phenomena widely used to test capabilities of derivational approaches
 - meaning-form mismatches
 - traditional infringements to canonicity
- In the future, we would like to rely on a more normalized benchmark, in line with [Corbett 2010]'s canonicity principles used to compare derivational descriptions
 - test a wider (standard) range of phenomena, in order to perform new sorts of analyses and obtain a more accurate classification of the contending models

References