Evaluating morphosemantic demotivation through experimental and distributional methods

Alizée Lombard [‡], Marine Wauquier [†], Cécile Fabre°, Nabil Hathout°, Mai Ho-Dac°, Richard Huyghe [‡]

[‡] University of Fribourg
[†] LLF, CNRS & University of Paris
° CLLE, CNRS & Université Toulouse Jean Jaurès

Introduction

Morphosemantic demotivation

- The lexicalization of complex words, i.e. their inclusion in the lexicon, can induce a loss of compositionality (Lipka 1997, Bauer 1983, Corbin 1987, Blank 2001, Brinton & Traugott 2005, Hilpert 2020, a.o.)
- The semantic analyzability of lexicalized complex words is highly variable
 - Motivated
 - abattoir 'slaughterhouse'/abattre 'slaughter'
 - Demotivated
 - couloir 'corridor'/couler 'flow'
 - Semi-demotivated
 - trottoir 'sidewalk'/trotter 'trot'
- Demotivation, i.e. the obliteration of a morphosemantic relation between a base and a derivative, can be seen as a gradual phenomenon (Cruse 1986, Roché 2004)
 - How can degrees of demotivation be reliably identified?

- We investigate the gradual nature of morphosemantic demotivation and explore methods that can be used to measure it accurately
 - Experimental: based on speakers' judgements
 - Computational: based on distributional semantics
- The study is based on the evaluation of semantic transparency between morphologically related verbs and nouns in French
 - Semantic transparency can be quantified (Marelli & Baroni 2015, Gagné *et al.* 2017, Creemers *et al.* 2020, Bonami & Tribout 2021, Varvara *et al.* 2021)
 - To what extent do experimental and distributional measures of transparency converge?

Data

- Definition of 3 conditions
 - C1 demotivated
 - C2 semi-demotivated
 - C3 motivated
- 6 experts selected 78 verb-noun pairs
 - 26 pairs per condition
 - 8 deverbal suffixes
- All pairs satisfy the following properties:
 - Nouns can be formally analyzed as derived from verbs through suffixation
 - The morphosemantic relation is historically attested
- Verb-noun pairs are selected according to the following criteria:
 - C1, C2 and C3 have an equal number of pairs
 - Suffixes are represented in equal proportions across conditions
 - Pairs are comparable in terms of length, frequency and semantic type

Examples

	C1		C2		C3	
	Noun	Verb	Noun	Verb	Noun	Verb
-ade	boutade	bouter	taillade	tailler	brimade	brimer
	'joke'	'push out'	'gash'	'carve'	'bullying'	'bully'
-age	partage	partir	tapage	taper	passage	passer
	'sharing'	'leave'	'disturbance'	'hit'	'passing'	'pass'
-ance	créance	croire	ordonnance	ordonner	attirance	attirer
	'debt'	'believe'	'prescription'	'command'	'attraction'	'attract'
-et	cachet	cacher	fumet	fumer	jouet	jouer
	'seal'	'hide'	'aroma'	'smoke'	'toy'	'play'
-ette	éprouvette	éprouver	mouillette	mouiller	sonnette	sonner
	'test tube'	'feel'	'test strip'	'wet'	'doorbell'	'bell'
-eur	procureur	procurer	synthétiseur	synthétiser	danseur	danser
	'prosecutor'	'provide'	'synthesizer'	'synthesize'	'dancer'	'dance'
-oir	couloir	couler	trottoir	trotter	abattoir	abattre
	'corridor'	'flow'	'sidewalk'	'trot'	'slaughterhouse'	'slaughter'
-ure	serrure	serrer	fourniture	fournir	déchirure	déchirer
	'lock'	'grip'	'supplies'	'supply'	'tear'	'tear'

Experimental approach

Principle

• Verb-noun pairs are presented through an online survey to French native speakers, asked to evaluate the semantic proximity between members of each pair

Task

Figure 1: Stimulus and instructions example

Participants

• 309 Bachelor students from the University of Toulouse Jean Jaurès (France) participated in the survey (17 to 25 years old, mean 19.4)

Hypothesis

• Demotivated pairs (C1) should elicit judgements of lower semantic proximity than motivated ones (C3), and judgements for semi-demotivated pairs (C2) should fall in between

Results

Figure 2: Experimental proximity score per condition

- A mixed ordinal regression shows a significant effect of the condition (C1-C3) on experimental proximity scores (*p* < 2.2e-16)
- Results show consistency between experts' and non-experts' intuitions, highlight the psychological reality of semantic demotivation and its scalarity

Distributional approach

- Distributional semantics builds on the hypothesis that words with similar distributions, i.e. that appear in similar contexts, have similar meanings.
- Meaning of words in a given corpus is represented by vectors computed based on their co-occurrences
- The semantic similarity between two words is assessed by the distributional proximity of their vectors on a scale from 0 to 1.

- We computed the vectors with Word2Vec (Mikolov *et al.* 2013) from the French Wikipedia (900 million words)
 - Concatenation of 5 DSMs with the following parameters: CBOW, Negative Sampling, frequency threshold of 5, window of 5, lemmatized corpus
- For each verb-noun pair, we compute the cosine similarity between the vectors
 - We expect cosine scores to be higher (closer to 1) for C3 pairs than C1 pairs (closer to 0) (given that identical suffixes and semantic types are considered in each condition)
 - We expect C2 pairs to have intermediate cosine scores

Results

- C3 pairs have on average higher cosine scores than C2 and C1 pairs
 - Differences observed across the 3 conditions are significant (p = 2.21e-05)

Figure 3: Distributional proximity score per condition

• Differences in morphosemantic motivation are visible through distribution

Comparing approaches

Comparison of both approaches

Figure 4: Experimental (0 to 6) and distributional (0 to 1) score per pair

Convergence

- Overall both methods converge
 - A mixed ordinal regression model shows that distributional scores significantly predict experimental scores (p = 7.876e-06)
- The main differences observed point towards particularities of each method
 - Formal similarity encourages semantic similarity in speakers' judgements
 - traiteur 'caterer' traiter 'treat'
 - Distributional assessment can be affected by factors unrelated to motivation
 - Polysemy (raser 'shave/destroy/bore' - rasoir 'razor')
 - Referential domains (*peignoir* 'bathrobe' - *peigner* 'comb')
 - Corpus bias

Additional insights

- The confrontation of the two approaches highlights two remarkable clusters
- The convergence of both approaches is a clue for their individual reliability
 - Strong distributional similarity is a solid hint for semantic motivation
 - Low experimental proximity is a solid hint for semantic demotivation

Conclusion

- We confirm the gradual character of demotivation both in a linguistic and a psycholinguistic perspective
 - Semi-demotivated pairs are widely spread across the similarity spectrum
 - Both motivated and demotivated pairs vary wrt (non-)similarity
- Experimental and distributional methods can be seen as complementary
 - Experimentation allows for a more fine-grained assessment of demotivation, but is costly and biased by its artificiality
 - Distribution provides a usage-based assessment, but suffers from the limits of the tool

- The tested dataset needs to be extended (more morphological diversity)
- Other measures of semantic transparency should be explored
 - Priming effects (Longtin et al. 2003)
 - Distributional inclusion (Varvara *et al.* 2021), offset vectors (Bonami & Tribout 2021)
- Demotivation can be investigated wrt affixes and productivity
 - Do some affixes present a higher rate of demotivation?
 - Is motivation correlated to affix productivity?

References

- Bauer, Laurie. 1983. English word-formation. Cambridge University Press.
- Blank, Andreas. 2001. Pathways of lexicalization 1596-1608. De Gruyter Mouton.
- Bonami, Olivier & Delphine Tribout 2021. Échantinom: a hand-annotated morphological lexicon of French nouns. DériMo, Nancy, 9-10 September 2021.
- Brinton, Laurel J. & Elizabeth Closs Traugott. 2005. Lexicalization and language change. Cambridge University Press.
- Corbin, Danielle. 1987. Morphologie dérivationnelle et structuration du lexique. Mouton De Gruyter.
- Creemers, Ava, Amy Goodwin Davies, Robert J. Wilder, Meredith Tamminga & David Embick. 2020. Opacity, transparency, and morphological priming: A study of prefixed verbs in dutch. *Journal of Memory and Language* 110.
- Gagné, Christina L., Thomas L. Spalding & Kelly A. Nisbet. 2017. Processing English compounds: Investigating semantic transparency. SKASE Journal of Theoretical Linguistics 13(2). 2–22.

Hilpert, Martin. 2020. Lexicalization in morphology. Oxford University Press.

- Lipka, Leonhard. 1992. Lexicalization and institutionalization in English and German. Linguistica Pragensia/Akademie Ved CR, Ústav pro Jazyk Ceský 1–13.
- Longtin, Catherine-Marie, Juan Segui & Pierre Hallé. 2003. Morphological priming with morphological relationship. Language and Cognitive Processes 18. 313-334.
- Mikolov, Tomas, Kai Chan, Greg Corrado & Jeffrey Dean. 2013. Efficient estimation of word representations in vector space. In Proceedings of international conference onlearning representations (iclr). Scottsdale.
- Roché, Michel. 2004. Mot construit ? mot non construit ? quelques réflexions à partir des dérivés en -ier(e). Verbum 26(2). 459–480.
- Varvara, Rossella, Gabriella Lapesa & Sebastian Padó. 2021. Grounding semantic transparency in context. Morphology 213–234.