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Abstract

In this article, we present a proof-of-concept method for creating word-formation networks by
transferring information from another language. The proposed algorithm utilizes an existing
word-formation network and parallel texts and creates a low-precision and moderate-recall net-
work in a language, for which no manual annotations need to be available. We then extend the
coverage of the resulting network by using it to train a machine-learning method and applying
the resulting model to a larger lexicon, obtaining a moderate-precision and high-recall result. The
approach is evaluated on French, German and Czech against existing word-formation networks
in those languages.

1 Introduction

Aword-formation network is a dataset capturing information about how are lexemes created using deriva-
tion, compounding, conversion and other types of relations. Such networks can be created using various
degrees of automatization. On one end of the spectrum are networks created by manually annotating the
individual relations, resulting in a dataset that is highly precise, but either expensive to create or small in
size.
In this article, we explore amethod from the other, unsupervised, part of the scale: a methodwhich does

not require any human input or in-language annotations of word-formation relations. Instead, it transfers
an existing word-formation network from another language using parallel texts and off-the-shelf tools for
tokenization and lemmatization. Parallel texts are significantly more abundant and easier to obtain than
word-formation annotations and they are available for more languages – compare the OPUS collection
(Tiedemann, 2012), where just the OpenSubtitles corpus is available for 65 languages, to a survey of
available word-formation networks listing only 63 resources for 22 languages (Kyjánek, 2018).
As a result, our method should allow for a cheap and rapid creation of word-formation networks for

many languages, although at a cost of lower quality. We hope that it is possible to emulate the successes
of transfer learning methods used for other similar tasks in natural language processing, such as syntactic
parsing (McDonald et al., 2011), part-of-speech tagging (Zhang et al., 2016) or lemmatization (Rosa and
Žabokrtský, 2019).
The main idea behind our methods is that translation of text between languages is supposed to pre-

serve the pragmatic meaning of texts and it usually preserves also the semantic meaning of individual
sentences and words. Since word-formational relations connect words with similar semantics and or-
thography, multiple possible target-language translations of a single source-language word are word-
formationally related with a higher probability than randomly selected words. Moreover, many types
of word-formational relations have parallels across languages. For example, actor nouns are typically
derived from verbs – and if we take two such nouns from two languages, which are translations of one
another, chances are that their predecessor verbs will also be translation equivalents (e.g. the Czech and
English relations opravit (“to repair”)→ opravář (“repairman”) are parallel, even though one uses deriva-
tion and the other one compounding). Therefore, we believe that some information about word-formation
relations can be shared across languages.



By further filtering the transferred relations by orthographic distance, we obtain a moderate-precision
and low-recall word-formation network. The recall can be improved by extracting the discovered string-
wise word-formation patterns using a statistical machine-learning method and finding more examples of
them across the lexicon.
The pilot experiments presented in this paper focus on one-to-one relations between lexemes. We omit

compounding altogether and simplify the task of creating a word-formation network to a task of assigning
each lexeme a single parent lexeme, or deciding that it is unmotivated and should function as a root of
the morphological family.
Moreover, although we aim to produce algorithms and models which would be able to create word-

formation networks for any language with mostly concatenative morphology and written in an alphabetic
script, we currently focus on French, German and Czech, because these are among the few languages for
which a large, high-quality word-formation network already exists. The existing networks, Démonette
(Hathout and Namer, 2014), DErivBase (Zeller et al., 2013) and DeriNet (Žabokrtský et al., 2016), serve
a dual role as data for transfer on the source side, and evaluation datasets on the target side of each of the
six possible independent translation pairs.

2 Related work

Several unsupervised methods of creating word-formation networks have been proposed before. Baranes
and Sagot (2014) created a method that infers derivational relations from inflectional paradigms and
reported a very high precision (80-98% depending on the language). The relations are detected by first
extracting a list of possible prefixal and suffixal changes and then pattern-matching pairs of words against
it. The inflectional paradigms are used for reducing problems with suppletion and allomorphy within
stems, which would otherwise cause the prefix- and suffix pattern matching to fail – e.g. if we know that
worse is a comparative form of the lemma bad, we can link the lexeme worsen to bad using the rule X-e
→ X-en.
A different solution to the problem of allomorphy is proposed by Lango et al. (2021), who use a pattern-

mining method to detect rules of allomorphy jointly with affixation. The patterns are extracted automat-
ically in an unsupervised fashion and the potential relations are ranked by a machine-learning model
trained on a small manually annotated word-formation network.
Batsuren et al. (2019) deal with cognate detection (i.e. linking words of common origin, identical

meaning and similar spelling in different languages) using a multilingual approach. The multilingual
data they use is a specialized linguistic resource containing information about etymological ancestry,
which means that their methods are not directly applicable in our semi-supervised setting.
Cognates can also be used as a clue for aligning parallel corpora and several methods for detecting

cognate pairs were developed with the alignment task in mind, but these methods need not be very pre-
cise – e.g. Church (1993) uses identical character 4-grams and Simard et al. (1992) use pairs of words
with identical first four characters; both methods are too imprecise to recognize exact word-formational
relations.
A method utilizing cosine distance between neural-network word embeddings was used by Üstün and

Can (2016) to construct an implicit word-formation network as an intermediate step in morphological
segmentation. Word embeddings are also used by Musil et al. (2019), who show that words created
through similar word-formation processes have similar embedding differences; however, they do not use
these results to actually construct a network out of word-embedding data.

3 Transfer algorithm

To transfer a word-formation network from a source to a target language, we view the network as a list
of parent-child derivational relations and attempt to find the best parent for each target-side lexeme using
a word-translation model together with target-side formal similarity metrics. Conceptually, the source
lexeme C is first backtranslated into the source language as C ′, a suitable parent P ′ of the translation is
found in the source word-formation network and this parent is translated into the target language as P .



Figure 1: An example of finding a parent for the German lexeme Lehrer (“teacher”) by transferring in-
formation from a French word-formation network, with word-formation relations in grey and alignments
in green. Lehrer is aligned to enseigneur 3∕5 times, which has enseigner available through 1 relation, to
which lehren is aligned 4∕4 times. Lehrer is also aligned to instructeur 2∕5 times, which has instruire avail-
able through 1 relation, to which lehren is aligned 1∕4 times and instruieren 3∕4 times. The translation score
of lehren→ Lehrer, calculated according to Equation 1 below, is therefore 3
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4 = 0.15. The relative edit distance is 2∕6 for lehren→ Lehrer,

and 8∕11 for instruieren→ Lehrer. Therefore, the final score of lehren→ Lehrer is 0.35+5·(1−2/6)
6 = 0.336

and the score of instruieren→ Lehrer is 0.15+5·(1−8/11)
6 = 0.252.

The translations and backtranslations are found using a probabilistic word translation lexicon induced
from word-aligned data obtained by running FastAlign (Dyer et al., 2013) on a lemmatized parallel cor-
pus. Since the present article does not consider compounding, univerbation or other word-formation
relations connecting more than two lexemes, we count each pair of aligned lexemes separately, regard-
less of whether one of the lexemes has other alignments in that parallel sentence pair. As a result, a
lexeme aligned to a multi-word phrase is considered to be equally translated from each member lexeme
of that phrase.
Since there may be multiple possible translations of each lexeme, and because the most suitable parent

needn’t be the direct parent of C ′, but rather another member of its word-formational family (e.g. the
Czech lexemes svoboda (“freedom”) → svobodný (“free”) have the opposite derivational relation from
English or German frei→ die Freiheit), the process is conducted probabilistically, yieldingmany potential
parents P for each C, each with a score. The target network is then found by finding the spanning tree
of this graph of relations which maximizes the product of the scores (Chu and Liu, 1965).
The score of each potential relation is obtained as a weighted arithmetic mean of one minus the relative

edit distance between C and P and their translation score. The relative edit distance is the Levenshtein
distance between the lemmas of C and P divided by the maximum of their lengths, yielding a number
between 0 and 1.
We define the translation score of C and P as Xfer(C,P ) according to Equation 1 below, where

|align(x, y)| denotes the number of alignments between lexemes x and y seen in the aligned data and
dist(C ′, P ′) denotes the number of relations on the shortest path from C ′ to P ′ in the source network.

Xfer(C,P ) =
∑

∀C′,P ′

|align(C,C ′)|∑
∀x |align(C, x)|

· 0.5dist(C′,P ′) · |align(P ′, P )|∑
∀x |align(P ′, x)|

(1)

Therefore, the translation score is the product of the conditional probability of obtaining the backtrans-
lated lexeme C ′ given the lexeme C and the conditional probability of obtaining the translated parent
lexeme P given P ′, halved for each relation that has to be traversed between C ′ and P ′. If there are
multiple possible choices of C ′ and P ′ for the given C and P , their translation scores are summed.
To prevent relations with low scores from being selected in the case where there are no better candi-

dates, a relation is only considered for inclusion if its score is higher than a threshold.
An illustration of the translation score calculation is given in Figure 1.
The transfer algorithm is parametrized by the weights used for calculating the weighted mean of the

translation and edit distance scores, and by the threshold. Since we intend to use the transfer algorithm in



an unsupervised setting, it is necessary to obtain the weights without training them using e.g. grid search
or gradient descent on in-language annotations. We have, however, found that although the algorithm
is moderately sensitive to the setting of the weights and the threshold, the optimal settings in all tested
languages are nearly identical. This allows us to train the hyperparameters on one language pair in a
supervised manner and use them on other pairs without further training. Therefore, we set the weight of
the edit distance to 5, the weight of the translation to 1 and the threshold to 0.8 using grid search on the
Czech→ German transfer pair and use these hyperparameters on all pairs.

4 Expansion through machine learning

The word-formation network obtained via cross-lingual transfer covers only lexemes with alignments,
i.e. high-frequency ones. Therefore, it is desirable to increase coverage of lower-frequency parts of the
lexicon and lexemes not seen in the parallel data. We perform this by extracting affixal patterns from the
transferred network and applying them across the data.
The affixal pattern of a (proposed) word-formational relation is an unsupervised approximation of the

morpheme difference between the related lexemes. We obtain it as the leftover substrings to the left and
right of the longest common contiguous substring shared by lowercased lemmas of the lexemes. For
example, the relation Kampf (“a fight”) → kämpfen (“to fight”) has the longest common contiguous
substring mpf and affixal pattern ka-→ kä- + -en.
We use the transferred network as a seed to train a machine learning method to predict derivational

relations by classifying pairs of lexemes as either directly derived or non-derived from one another. The
output network is obtained by finding the maximum spanning tree of the graph of predictions (Chu and
Liu, 1965). The features used for classification are the one-hot-encoded part-of-speech categories of both
lexemes, their edit distance, the difference of their lengths, whether each of them starts with a capital letter
and the frequency of their affixal pattern as seen in the training dataset.
Since classifying all pairs of lexemes found in the dataset is too computationally expensive, we only

sample pairs of lexemes that are near one another when the dataset is lexicographically sorted by lemma,
in both prograde and retrograde fashions. The prograde-sorted list puts lemmas with common begin-
nings near each other, meaning that pairs of words differing only in short suffixes will be selected for
classification. The retrograde-sorted one does the same with lemmas differing only in a short prefix.
We perform the lexicographic sorting on uppercased lemmas stripped of accent marks so that e.g. the

German word Wunsch (“a wish”) sorts close to wünschen (“to wish”) despite the differences in case and
the presence or absence of the umlaut.
Thismethod of obtaining relation candidates depends on the linguistic properties of the languages under

consideration, namely Czech, French and German. All three derive words predominantly by affixation,
with limited allomorphy in the stem and only rare examples of circumfixation, apophony or suppletive
relations, which thismethod generally doesn’t detect as possible relations. Therefore, looking at awindow
of ±5 lexemes catches 85 % of all possible derivational relations in DErivBase and ±10 catches 90 %.
On Démonette, 96 % of derivations are within ±5 and 98 % are within a ±10 window. In DeriNet, a
window of ±5 contains 85 % of all relations and ±10 contains 90 %. The method would perform poorly
on languages with more frequent circumfixation or nonconcatenative morphology, such as transfixation
or templatic morphology found in e.g. Hebrew or Arabic.
A possible systematic fix for detecting words derived by circumfixation would be to use a more com-

plex measure of morphological similarity. A method we tried is the orthographic part of the model
from Proxinette (Hathout, 2008), which approximates morphological relatedness by counting common
n-grams of varying length, probabilistically weighting them by rarity in the corpus. Its construction al-
lows enumerating lexemes most similar to an input lexeme in a computationally-tractable way, without
considering all pairs. However, it produces inferior results on the three datasets we use, we therefore
don’t use it in our experiments.
We evaluatedmultiple classificationmethods implemented in the scikit-learn package (Pedregosa et al.,

2011), namely SVC, LogisticRegression, AdaBoostClassifier, KNeighborsClassifier, DecisionTreeClas-
sifier, BernoulliNB and Perceptron and selected logistic regression for consistent evaluation performance.



1 for gold_child in gold.lexemes:
2 if not gold_child.parent:
3 true_negative++
4 else:
5 for t_child in translations(gold_child):
6 for t_parent in family(t_child):
7 for parent in backtranslations(t_parent , gold_child):
8 if parent = gold_child.parent:
9 true_positive++
10 continue_line 1
11 false_negative++
12 accuracy := ((true_positive + true_negative) / (true_positive +

↪→ true_negative + false_negative))
13 recall := true_positive / (true_positive + false_negative)
Listing 1: Pseudocode for calculating oracle accuracy and recall of the transfer algorithm. The
backtranslation function returns all backtranslations of t_parent, except those that translate to
gold_child.

5 Evaluation Method

We evaluate the performance of our systems by measuring precision, recall and accuracy in the task of
assigning a parent to a lexeme. We define precision as the ratio of correctly predicted relations to all
predicted relations, recall as the ratio of correctly predicted relations to all gold relations and accuracy as
the ratio of correctly assigned parents or correctly recognized unmotivated lexemes to all gold lexemes.
Therefore, the precision and recall don’t take into account unmotivated lexemes, while the accuracy does.
The gold-standard data is taken from the existing word-formation network for the target language.
Because the set of lexemes captured in the transferred network differs from the one used in the gold-

standard data, we calculate the metrics in two ways, which differ in their treatment of missing lexemes.
“External” measures consider all gold-standard relations of lexemes missing from the evaluated network
to be false negatives, while the “internal” measures ignore them insteadmeasures and onlymeasure scores
on the intersection of the two lexicons. Precision is the same for both methods, but recall and accuracy
differ. The baseline measures and the networks obtained by machine learning are created from the set of
lexemes found in the gold-standard network, which makes the internal and external measures identical.

5.1 Baselines

To establish a lower bound of reasonably achievable scores, we created two baselines: one trivial, called
“empty”, and one inspired by the purely left- or right-branching parse, the standard baseline in syntactic
parsing, called “closest-shorter”.
The empty baseline for a given lexicon is calculated as the scores of an empty word-formation network

created over that lexicon, i.e. a networkwithout any relations. The lexemes from gold-standard data which
have no assigned parent are therefore evaluated as correct, while all lexemes with parents are incorrect,
resulting in unmeasurable (zero) precision, zero recall and moderate-to-high accuracy.
The closest-shorter baseline gives each lexeme four options for its parent and selects the one which has

a shorter lemma and the closest orthographic distance, as measured by the ratio of the length of the longest
common contiguous substring to the sum of lengths of the two lemmas. The options to choose from are
the previous and next lexemes in prograde sorting of the lexicon, and the previous and next lexemes
in retrograde sorting. The lemma length criterion means that lexemes surrounded by longer neighbors
in both prograde and retrograde sorting of the lexicon remain unmotivated. We have already observed
that both ends of most derivational relations lie within a small window on a sorted lexicon, making this
baseline rather strong in terms of both precision and recall.



Lang pair Sentences Tokens on left Tokens on right

de — cs 15 237 340 48 320 109 45 922 280
fr — cs 25 838 124 83 108 504 87 983 667
fr — de 14 779 572 44 135 610 48 440 995

Table 1: Sizes of parallel data for each language pair after part-of-speech category filtering.

5.2 Oracle Score

As an additional measure of the potential quality of the transfer approach, we measured the oracle score
of obtaining the gold-standard parent through any combination of back- and forward-translations of gold-
standard child lexemes. Under this measure, unmotivated lexemes are always considered to be correct,
and a derived lexeme is considered to be correctly connected to its parent if it can be backtranslated to
a member of a word-formational family, which contains a member that can be translated to the correct
parent. The pseudocode of this algorithm is present in Listing 1. The recall and accuracy obtained using
this algorithm represent the maximum scores achievable with the transfer method, if it selected the gold
parent for each lexeme every time it is available.
Any error in the recall can be broken down into three categories: first, where we cannot translate the

child to the language of the transferring network; (no t_child on line 5 of Listing 1); second, where
there are no translations of any members of the translated lexeme’s family (no parent on line 7) and
third, where no possible parent matches the gold one (predicate on line 8 is always false).

5.3 Experimental setting

For the purposes of this paper, we conducted experiments on Czech, French and German, which are
all languages with existing word-formation networks suitable for transfer – DeriNet 2.0 (Žabokrtský
et al., 2016) with 809 282 relations, Démonette 1.2 (Hathout and Namer, 2014) with 13 808 relations and
DErivBase 2.0 (Zeller et al., 2013) with 43 368 relations, respectively. For ease of use, we used their
versions available in the UDer 1.0 collection (Kyjánek et al., 2019), which have been converted to a
common format at a slight loss of information. We transferred each network into both other languages
and compared the result to the existing network for that language.
The transfer was realized using word dictionaries obtained from word alignments of parallel data.

We used the OpenSubtitles dataset from the OPUS collection (Tiedemann, 2012) for all language pairs,
lemmatizing them with UDPipe 1.2 (Straka and Straková, 2017) and extracting only words tagged as
adjectives, adverbs, nouns and verbs. The lemmatizer uses pretrained models trained on treebanks from
Universal Dependencies (Nivre et al., 2016). The lemmatized corpora are then aligned using FastAlign
(Dyer et al., 2013). The data sizes are listed in Table 1.

6 Evaluation Results

As can be seen in Table 2, the networks created by the transfer algorithm are rather small in size. Within
the constructed network, precision and recall are moderate for most language pairs, but when compared
to the gold standard data, recall is nearly zero for all of them.
The performance of the transfer method depends a lot on the size of the transferred network. Since

the Czech DeriNet is an order of magnitude larger than the other networks, the gold scores for networks
created by using it as a base are the highest ones, but even these don’t match more than 2.5% of relations
from the gold-standard data.
The precision of the constructed networks is also influenced by the translation quality. The alignment

data trained on the de—fr pair (in both directions) has many incorrect alignments. This doesn’t affect
the oracle score, since the correct translations will generally be found, but the wide distribution of the
probability mass hurts the actual algorithm, which is unable to distinguish plausible and implausible
translations.
The machine learning method provides a way of generalizing the output of the transfer method, as it



Size Internal scores [%] Gold scores [%]

Alg Lang pair Lex Rel Prec. Recall F1 Acc. Recall F1 Acc.

Xfer

de→ cs 18 118 5 971 39.66 33.11 36.09 53.71 0.29 0.58 1.19
fr→ cs 20 225 7 045 42.46 36.11 39.03 53.79 0.37 0.73 1.33
cs→ de 13 803 3 847 27.06 35.36 30.66 65.88 2.45 4.50 17.07
fr→ de 2 938 600 14.33 14.14 14.24 64.74 0.20 0.39 4.19
cs→ fr 2 769 1 219 23.54 30.50 26.57 42.72 2.10 3.86 7.65
de→ fr 439 144 3.47 11.36 5.32 59.45 0.04 0.07 1.84

ML

de→ cs 1 026 036 743 469 45.70 73.81 56.45 48.90 73.81 56.45 48.90
fr→ cs 1 026 036 742 784 39.60 70.00 50.58 43.99 70.00 50.58 43.99
cs→ de 280 454 68 154 35.02 67.73 46.17 80.15 67.73 46.17 80.15
fr→ de 280 454 34 809 44.25 39.35 41.66 84.62 39.35 41.66 84.62
cs→ fr 21 288 15 136 60.33 88.64 71.79 66.30 88.64 71.79 66.30
de→ fr 21 288 4 700 35.57 13.79 19.88 36.69 13.79 19.88 36.69

closest-
shorter
baseline

cs
de
fr

1 026 036 808 933 21.03 53.54 30.20 23.35 53.54 30.20 23.35
280 454 225 092 5.22 56.51 9.55 20.70 56.51 9.55 20.70
21 288 17 451 31.65 82.71 45.79 38.55 82.71 45.79 38.55

empty
baseline

cs
de
fr

1 026 036 0 N/A 0.00 0.00 21.14 0.00 0.00 21.14
280 454 0 N/A 0.00 0.00 84.62 0.00 0.00 84.62
21 288 0 N/A 0.00 0.00 35.15 0.00 0.00 35.15

Table 2: Evaluation scores of the results and baselines for each language pair. Internal scores aremeasured
on the set of lexemes in the generated network, gold scores on the set of lexemes from gold data. Precision
is identical for both. For the machine learning and baseline algorithms, the distinction between internal
and gold scores does not matter, since the lexicon used for prediction is taken from the gold-standard data
as is.

Scores [%] Error cause [%] WFN rel count

Lang pair Recall Accuracy No child trans No parent trans No match Xferred Gold

de→ cs 5.10 29.14 91.05 0.08 3.77 43 368 809 282
fr→ cs 6.75 31.74 89.62 0.05 3.59 13 808 809 282
cs→ de 34.47 89.82 52.08 0.23 13.22 809 282 43 368
fr→ de 26.24 92.69 50.60 0.02 22.14 13 808 43 368
cs→ fr 34.67 80.11 56.81 0.20 8.33 809 282 13 808
de→ fr 22.26 64.01 61.89 0.07 15.78 43 368 13 808

Table 3: Transfer oracle scores for each language pair. Precision is 100% in all cases. The error causes
list percentage of cases where the lexeme cannot be translated to the language of the transferring network,
where no possible parents can be translated back, and when none of the translated parents match the gold
one, respectively. The error percentage points are relative to the total relation count, i.e. they sum up
to 100 together with recall. The last two columns list sizes of the transferred and gold-standard word-
formation networks, measured in relations.



Figure 2: Word-formation networks generated by the machine learning expansion of the transferred net-
works, showing the family of lexeme to reconcile circled in violet for each of the six language pairs.
Clockwise from top left: de-cs, de-fr (single lexeme), fr-de, cs-fr, cs-de, fr-cs.

learns frequent affixal patterns from the transferred data and applies them to a larger lexicon, omitting in-
frequent (often spurious) patterns. As seen in the second part of Table 2, this results in increased precision
on the networks transferred to French and German, where the gold standard data consists of relatively
few selected paradigms and therefore skews towards fewer, more productive patterns. The results on the
Czech data, which is more varied, still reach precision comparable to the transferred networks we train
on. Recall increases in all cases, even when compared to the “internal” scores, which are more favorable
to the transferred networks. Due to this large increase, F1-score also increases. Sample outputs of the
machine learning method can be seen in Figure 2.
The oracle scores are in Table 3. The scores are influenced by the ratio of sizes of the word-formation

networks used for transfer and evaluation; transferring a large network and evaluating on a smaller one
gives an advantage in recall in comparison to the opposite scenario, simply because a larger source net-
work offers more options to select from after transfer. The error causes listed in the table correspond to
the sources of error in recall as categorized in Section 5.2.
For all language pairs, most of the errors are attributable to the first cause, where the gold data contains

untranslatable lexemes. For the pairs that translate to Czech, this is again explainable by the size and
composition of its DeriNet network, which contains many unattested lexemes – finding rare lexemes
such as přeskočitelnost (“skippability”) in the parallel data is unlikely.
Additionally, transfers of networks to German have higher accuracy than transfers to French, even



though the recall is comparable. This is because the German network, DErivBase, contains many com-
pounds, which don’t have their parents annotated and are listed as unmotivated. These are counted in the
accuracy scores (the definition of oracle score above considers missing relations to be always correctly
recognized) but do not contribute to recall of relations. The unmotivated words are also the reason behind
the fact that the fr-de pair has higher accuracy than cs-de, despite having lower recall – fewer relations
are translated, resulting in more unmotivated words being correct.
The oracle scores show that the main bottleneck is the word translation dictionary – the “No child

trans” category accounts for 50-90% of all errors. This is also the reason why the networks obtained
through the machine learning expansion have better scores than the oracle of the transfer algorithm. The
transfer lexicon is limited to the lexemes found in the parallel data, whose source-side alignments are
found in the source word-formation network, and for evaluation purposes, we further limit the lexicon
to lexemes from the gold-standard data. The machine-learning pipeline uses the gold-standard lexicon
directly, eliminating the “No child trans” class of errors entirely.

7 Conclusion

In this paper, we presented a cross-lingual method for creating word-formation networks by transferring
an existing network using a word-translation lexicon induced from word alignments. The transferred
small networks are then expanded by extracting paradigms using statistical machine learning and applying
them to a larger set of lexemes. The resulting word-formation networks show moderately high precision
and good recall on six language pairs.
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